In the News, 2018
In 2017, a big year for science, we learned from cosmic discoveries
January 11, 2018
In 2017, a big year for science, we learned from cosmic discoveries
by Michael S. Turner, The Hill

Our Universe is unfathomably large - billions of years old, billions of light-years across, and filled with hundreds of billion of galaxies, each with hundreds of billions of stars and planets. It often is beyond the reach of our instruments and our minds. Nonetheless, driven by curiosity, each year we make discoveries that expand our view of it, surprise us and help us to understand our place within it.

The big event of 2017 was the collision of two neutron stars in a relatively nearby galaxy, 140 million light years away. Such events are commonplace, happening many times a day, yet this was one was special because for the first time, the National Science Foundation's Laser Interferometer Gravitational-wave Observatory (LIGO) detected tiny ripples in the fabric of space-time that the cataclysmic event created. LIGO alerted astronomers, and GW170817 became the most well-studied astrophysical event, viewed with radio, infrared, visible, x-ray and gamma-ray "eyes."

Here is but one thing we learned: most, if not all, of the heaviest elements in the periodic table, e.g., gold and platinum, were made by colliding neutron stars.

Of course, LIGO thrilled us in 2016 with its announcement that it had detected gravitational waves from colliding black holes; this past December, three American scientists (Barry Barish and Kip Thorne of Caltech, and Rainer Weiss of MIT) were honored with the Nobel Prize for that discovery.

Closer to home, in October we were surprised by the first interstellar asteroid ever seen. We are used to asteroids - debris left over from the formation of our solar system - visiting us. In fact, the PanSTARRS1 telescope on Haleakala that discovered Oumuamua (for "scout"), as it is now officially known, searches for near-Earth objects that are potentially Earth-threatening. Oumuamua is not bound to our sun; it flew in from the direction of the Lyra constellation, passed between Mercury and the sun, and flew out again in the direction of the Pegasus constellation.

As large as an aircraft carrier and similarly shaped, Oumuamua reminded us that we are connected to the rest of the cosmos. Our solar system likely has shed asteroids and even planets that have flown by other stars with planets, and four NASA spacecraft - Pioneers 10 and 11 and Voyagers 1 and 2 - have left our solar system. The Voyagers carry the Golden Record of sounds recorded from Earth that Carl Sagan and his team put together to introduce us to the larger Universe.

It has been more than 20 years since we discovered the first exoplanets (planets orbiting around other stars). NASA's Kepler satellite has been the exoplanet workhorse, having discovered more than 4,000 exoplanets and 600 planetary systems. Astronomers have identified around 10 exoplanets in the habitable zone. Last year's big news was the discovery of the TRAPPIST 1 system, seven terrestrial-like planets orbiting a red dwarf star about 40 light years away. Five of the seven planets are similar in size to Earth and three are in the habitable zone, the sweet spot where liquid water - and hopefully life - can exist. We are well on our way to answering a very big question: Are we alone?

Moving to the far reaches of the Universe, the most distant quasar seen yet was discovered last year. The light we see began the journey to us when the Universe was only about 700 million years old. It presents us with a mystery: How did the billion-solar-mass black hole that powers this quasar form so early in the history of the Universe? (All galaxies, including our Milky Way, have massive black holes at their centers and go through an early "quasar phase" when their black holes shine brightly because of infalling matter.) LIGO and other gravitational-wave detectors coming on line in the future should shed light on this question.

While the great American eclipse of 2017 was not a surprise and did not lead to any startling discoveries, millions of Americans including me - were awed by it as the path of totality traversed the United States from Oregon to Georgia. In this amazing natural phenomenon, the moon nicely fits over the sun and blocks its light, allowing us to look directly at the sun without being blinded and view its - beautiful corona.

The corona of the sun is much hotter (millions of degrees) and wispier than its surface, extending many solar radii beyond the disk of the sun. The corona is responsible for much of the sun's activity that impacts our planet, including solar flares and coronal mass ejections, and how the corona works is still a mystery. Later this year, NASA will launch the Parker Solar Probe, which will orbit the sun on a highly elliptical path that will take it inside the sun's corona - really! - more than 20 times to make measurements that could solve some of mysteries of the corona.

Science is now a global activity that the United States no longer dominates. But as these discoveries illustrate, we continue to lead. Our success has involved three critical elements: thinking bold, throwing deep and sticking with it.

The LIGO Nobel Laureates were bold enough to think that you could detect a change in distance of one-thousandth the size of a proton between two mirrors separated by four kilometers. The NSF threw deep when it invested close to $1 billion over 25 years to build LIGO. And NASA stuck with it when Hubble had initial mirror problems, and more recently when it found a work-around to keep Kepler producing science after two gyros failed at the end of its four-year planned mission.

Certainly, cosmic discoveries help us to understand our place in the Universe, but they also inspire and awe us, young and old.

Michael S. Turner is a theoretical cosmologist who coined the term "dark energy" in 1998. He is the Bruce V. and Diana M. Rauner Distinguished Service Professor at the University of Chicago, and is the former assistant director for mathematical and physical sciences for the National Science Foundation.Learn more >>

2018 APS Medal for Exceptional Achievement in Research
March 20, 2018
Photo credit: Kyle Bergner
APS News

The 2018 APS Medal for Exceptional Achievement in Research was awarded on February 1 to Eugene Parker, professor emeritus at the University of Chicago, for his "many fundamental contributions to space physics, plasma physics, solar physics, and astrophysics during the past 60 plus years." (Top Left) The medal was presented to Parker by 2018 APS President Roger Falcone along with APS CEO Kate Kirby. (Top Right) Family members and colleagues joined in the celebration: from left to right, Eric Parker, Susan Kane-Parker, Niesje Parker, Eugene Parker (seated); Michael Turner, Rocky Kolb, and Young-Kee Kim (University of Chicago), and Timothy Gay (University of Nebraska-Lincoln, APS Speaker of the Council, and University of Chicago Ph.D. graduate). APS is accepting nominations for the 2019 APS Medal now through May 1.Learn more >>

Risa Wechsler Named Director of KIPAC
August 21, 2018
Risa Wechsler, former KICP fellow

Image credit: Dawn Harmer/SLAC National Accelerator Laboratory
The Kavli Foundation

Risa Wechsler has been appointed director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of the Department of Energy's SLAC National Accelerator Laboratory and Stanford University. On Sept. 15, she'll take over from Tom Abel, whose five-year term at the helm of the institute is coming to an end.

KIPAC was founded in 2003 to explore new frontiers in astrophysics and cosmology. As a joint institute of SLAC and Stanford, it brings together experts in theory, computation, experiments and observations - the combined power needed to answer fundamental questions about the universe.

Risa Wechsler, associate professor of physics and of particle physics and astrophysics at SLAC and Stanford, has been named third director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC).

"KIPAC brought a completely new field of science to SLAC and Stanford," says SLAC Director Chi-Chang Kao. "Tom's leadership has been instrumental in raising the institution's profile. Risa's scientific excellence and experience will ensure KIPAC continues to grow and prosper."

Wechsler, an associate professor of physics at Stanford and of particle physics and astrophysics at SLAC, joined KIPAC in 2006. She became the head of the institute's theory group in 2009 and assistant director of scientific programs in 2013. From 2014 to 2018, Wechsler was co-spokesperson for the Dark Energy Spectroscopic Instrument Collaboration, and she has been chair of Stanford Physics Department's Committee on Equity and Inclusion since 2016. In 2017, she was named a fellow of the American Physical Society.

"In addition to being a highly regarded and accomplished researcher committed to outstanding science, Risa understands how the close partnership between Stanford and SLAC benefits both research and education in astrophysics and cosmology. She also recognizes the importance of supporting young talent in these disciplines," says Ann Arvin, vice provost and dean of research at Stanford. "KIPAC will thrive as a world-class research institute for the study of astrophysics and cosmology under her leadership."

Wechsler says, "This is an exciting time to be guiding KIPAC's future. We have a number of incredible research programs that will start taking data in the next five years. Those projects have been incubating for a long time, and soon we'll see the fruit of those many years of hard work. I'm also looking forward to broadening the scope of the astrophysics we do. New windows are opening on many aspects of the cosmos, from exoplanets to gravitational waves to galaxies farther away than any we've seen before, and they promise to greatly enrich our understanding of the universe over the next decade."

Wechsler, whose own research focuses on galaxy formation and cosmology using a combination of large simulations and galaxy surveys, hopes to strengthen connections with other academic units across the SLAC and Stanford campuses and leverage opportunities in data science, Earth science, engineering, and other areas. She points out that it's the people who make KIPAC what it is: "It has been a wonderful environment for young, exceptional scientists, and I believe we can make that environment even better."

She'll be the third KIPAC director, following Abel and Roger Blandford, the institute's founding director.

"Risa will be great for KIPAC," says Abel. "She knows it inside out and has been integral to making it what it is today. Her leadership will provide an exciting future and will help making KIPAC an even more fun and productive place to do research."Learn more >>

Next-gen camera for South Pole Telescope takes data on early universe
September 13, 2018
The South Pole telescope is using its new third-generation camera to search for the oldest light in the universe.

Photo by Bradford Benson
by Louise Lerner , Jared Sagoff, UChicago News

UChicago-led collaboration installed sensitive new instrument in Antarctica

Deep in Antarctica, at the southernmost point on our planet, sits a 33-foot telescope designed for a single purpose: to make images of the oldest light in the universe.

This light, known as the cosmic microwave background, or CMB, has journeyed across the cosmos for 14 billion years - from the moments immediately after the Big Bang until now. Because it is brightest in the microwave part of the spectrum, the CMB is impossible to see with our eyes and requires specialized telescopes.

The South Pole Telescope, specially designed to measure the CMB, is using its third-generation camera to carry out a multi-year survey to observe the earliest instants of the universe. Since 2007, the SPT has shed light on the physics of black holes, discovered a galaxy cluster that is making stars at the highest rate ever seen, redefined our picture of when the first stars formed In the universe, provided new insights into dark energy and homed in on the masses of neutrinos. This latest upgrade improves its sensitivity by nearly an order of magnitude - making it among the most sensitive CMB instruments ever built.

"Being able to detect and analyze the CMB, especially with this level of detail, is like having a time machine to go back to the first moments of our universe," said John Carlstrom, the Subramanyan Chandrasekhar Distinguished Service Professor at UChicago and the principal investigator for the South Pole Telescope project.

"Encoded in images of the CMB light that we capture is the history of what that light has encountered in its 14-billion-year journey across the cosmos," he added. "From these images, we can tell what the universe is made up of, how the universe looked when it was extremely young and how the universe has evolved."

Located at the National Science Foundation's Amundsen-Scott South Pole Station, the telescope is operated by a collaboration of more than 80 scientists and engineers from a group of universities and U.S. Department of Energy national laboratories, including three institutions in the Chicago area. These research organizations - the University of Chicago, Argonne National Laboratory and Fermi National Accelerator Laboratory - have worked together to build a new, ultra-sensitive camera for the telescope, containing 16,000 specially manufactured detectors.

"The ability to operate a 10-meter telescope, literally at the end of the Earth, is a testament to the scientific capabilities of the researchers that NSF supports and the sophisticated logistical support that NSF and its partners are able to provide in one of the harshest environments on Earth," said Vladimir Papitashvili, Antarctic astrophysics and geospace sciences program director in NSF's Office of Polar Programs. "This new camera will extend the abilities of an already impressive instrument."

The telescope is funded and maintained by the National Science Foundation in its role as manager of the U.S. Antarctic Program, the national program of research on the southernmost continent.

'Baby pictures' of the cosmos
The CMB is the oldest light in our universe, produced in the intensely hot aftermath of the Big Bang before even the formation of atoms. These primordial particles of light, which have remained nearly untouched for nearly 14 billion years, provide unique clues about how the universe looked at the beginning of time and how it has changed since.

"This relic light is still incredibly bright - literally outshining all the stars that have ever existed in the history of the universe by over an order of magnitude in energy," said University of Chicago professor and Fermilab scientist Bradford Benson, who headed the effort to build this new camera.

However, because most of the energy is in the microwave part of the spectrum, to observe it we need to use special detectors at observatories in high and dry locations. The South Pole Station is better than anyplace else on Earth for this: it is located atop a two-mile thick ice sheet, and the extremely low temperatures in Antarctica mean there is almost no atmospheric water vapor.

"Built with cutting-edge detector technology, this new camera will significantly advance the search for the signature of early cosmic inflation in the cosmic microwave background and allow us to make inroads into other fundamental mysteries of the universe, including the masses of neutrinos and the nature of dark energy," said Kathy Turner of the Department of Energy's Office of Science.

Scientists are hoping to plumb this data for information on a number of physical processes and even new particles. "The cosmic microwave background is a remarkably rich source for science," Benson said. "The third-generation camera survey can give us clues on everything from dark energy to the physics of the Big Bang to locating the most massive clusters of galaxies in the universe."


"The cosmic microwave background is a remarkably rich source for science."
- Asst. Prof. Bradford Benson


The details of this "baby picture" of the cosmos will allow scientists to better understand the different kinds of matter and energy that make up our universe, such as neutrinos and dark energy. They may even find evidence of the gravitational waves from the beginning of the universe, regarded by many as the "smoking gun" for the theory of inflation.

It also serves as a rich astronomical survey; one of the things they'll be looking for are some of the first massive galaxies in the universe. These massive galaxies are increasingly of interest to astronomers as "star farms," forming the first stars in the universe, and since they are nearly invisible to typical optical telescopes, the South Pole Telescope is perhaps the most efficient way to find them.

'Nothing that comes out of a box'
The South Pole Telescope collaboration has operated the telescope since its construction in 2007. Grants from multiple sources - the National Science Foundation, the U.S. Department of Energy and the Kavli and Moore foundations - supported a second-generation polarization-sensitive camera. The latest third-generation focal plane contains ten times as many detectors as the previous experiment, requiring new ideas and solutions in materials and nanoscience.

"From a technology perspective, there is virtually nothing that comes 'out of a box,'" said Clarence Chang, an assistant professor at UChicago and physicist at Argonne involved with the experiment.

For the South Pole Telescope, scientists needed equipment far more sensitive than anything made commercially. They had to develop their own detectors, which use special materials for sensing tiny changes in temperature when they absorb light. These custom detectors were developed and manufactured from scratch in ultra-clean rooms at Argonne National Laboratory.

The detectors went to Fermilab to be assembled into modules, which included small lenses for each pixel made at the University of Illinois at Urbana-Champaign. After being tested at multiple collaborating universities around the country, the detectors made their way back to Fermilab to be integrated into the South Pole Telescope camera cryostat, designed by Benson. The camera looks like an 8-foot-tall, 2,500-pound optical camera with a telephoto lens on the front, but with the added complication that the lenses need to be cooled to just a few degrees above absolute zero. (Even Antarctic isn't that cold, so it needs this special cryostat to cool it down further.)

Finally, the new camera was ready for its 10,000-mile journey to Antarctica by way of land, air and sea. On the final leg, from NSF's McMurdo Station to the South Pole, it flew aboard a specialized LC130 cargo plane outfitted with skis so that it could land on snow near the telescope site, since the station sits atop an ice sheet. The components were carefully unloaded, and a team of more than 30 scientists raced to reassemble the camera during the brief three-month Antarctic summer - since the South Pole is not accessible by plane for most of the year due to temperatures that can drop to -100 F.

The South Pole Telescope's multi-year observing campaign brings together researchers from across North America, Europe and Australia. With the upgraded telescope taking data, the exploration of the cosmic microwave background radiation enters a new era with a powerful collaboration and an extremely sensitive instrument.

"The study of the CMB involves so many different kinds of scientific journeys," Chang said. "It's exciting to watch efforts from all over come together to push the frontiers of what we know."

The South Pole Telescope collaboration is led by the University of Chicago, and includes research groups at Argonne National Laboratory, Case Western Reserve University, Fermi National Accelerator Laboratory, Harvard-Smithsonian Astrophysical Observatory, Ludwig Maximilian University of Munich, McGill University, SLAC National Accelerator Laboratory, University of California at Berkeley, University of California at Davis, University of California at Los Angeles, University of Colorado at Boulder, University of Illinois at Urbana-Champaign, University of Melbourne and University of Toronto, as well as individual scientists at several other institutions.

The South Pole Telescope is funded primarily by the National Science Foundation's Office of Polar Programs and the U.S. Department of Energy Office of Science. Partial support also is provided by the NSF-funded Physics Frontier Center at the KICP, the Kavli Foundation, and the Gordon and Betty Moore Foundation.Learn more >>

Gravitational waves provide dose of reality about extra dimensions
September 18, 2018
In new study, UChicago astronomers find no evidence for extra spatial dimensions to the universe based on gravitational wave data.

Courtesy of NASA's Goddard Space Flight Center CI Lab
by Louise Lerner, UChicago News

No evidence for extra spatial dimensions, UChicago scientists say

While last year's discovery of gravitational waves from colliding neutron stars was Earth-shaking, it won't add extra dimensions to our understanding of the universe -- not literal ones, at least.

University of Chicago astronomers found no evidence for extra spatial dimensions to the universe based on the gravitational wave data. Their research, published in the Journal of Cosmology and Astroparticle Physics, is one of many papers in the wake of the extraordinary announcement last year that LIGO had detected a neutron star collision.

The first-ever detection of gravitational waves in 2015, for which three physicists won the Nobel Prize last year, was the result of two black holes crashing together. Last year, scientists observed two neutron stars collide. The major difference between the two is that astronomers could see the aftermath of the neutron star collision with a conventional telescope, producing two readings that can be compared: one in gravity, and one in electromagnetic (light) waves.

"This is the very first time we've been able to detect sources simultaneously in both gravitational and light waves," said Prof. Daniel Holz. "This provides an entirely new and exciting probe, and we've been learning all sorts of interesting things about the universe."

Einstein's theory of general relativity explains the solar system very well, but as scientists learned more about the universe beyond, big holes in our understanding began to emerge. Two of these are dark matter, one of the basic ingredients of the universe; and dark energy, the mysterious force that's making the universe expand faster over time.

"This changes how a lot of people can do their astronomy."
- Astrophysicist Maya Fishbach

Scientists have proposed all kinds of theories to explain dark matter and dark energy, and "a lot of alternate theories to general relativity start with adding an extra dimension," said graduate student Maya Fishbach, a coauthor on the paper. One theory is that over long distances, gravity would "leak" into the additional dimensions. This would cause gravity to appear weaker, and could account for the inconsistencies.

The one-two punch of gravitational waves and light from the neutron star collision detected last year offered one way for Holz and Fishbach to test this theory. The gravitational waves from the collision reverberated in LIGO the morning of Aug. 17, 2017, followed by detections of gamma-rays, X-rays, radio waves, and optical and infrared light. If gravity were leaking into other dimensions along the way, then the signal they measured in the gravitational wave detectors would have been weaker than expected. But it wasn't.

It appears for now that the universe has the same familiar dimensions -- three in space and one of time -- even on scales of a hundred million light-years.

But this is just the beginning, scientists said. "There are so many theories that until now, we didn't have concrete ways to test," Fishbach said. "This changes how a lot of people can do their astronomy."

"We look forward to seeing what gravitational-wave surprises the universe might have in store for us," Holz said.

Other authors on the space-time study were Princeton's Kris Pardo and David Spergel.

Citation: "Limits on the number of space-time dimensions from GW170817." Pardo et al, Journal of Cosmology and Astroparticle Physics, July 23, 2018. doi: 10.1088/1475-7516/2018/07/048Learn more >>

Gravitational waves could soon provide measure of universe's expansion
October 23, 2018
UChicago scientists estimate, based on LIGO's quick first detection of a first neutron star collision, that they could have an extremely precise measurement of the universe's rate of expansion within five to ten years.

Image by Robin Dienel/The Carnegie Institution for Science
by Louise Lerner, UChicago News

UChicago study: New LIGO readings could improve disputed measurement within 5-10 years

Twenty years ago, scientists were shocked to realize that our universe is not only expanding, but that it's expanding fasterover time.

Pinning down the exact rate of expansion, called the Hubble constant after famed astronomer and UChicago alumnus Edwin Hubble, has been surprisingly difficult. Since then scientists have used two methods to calculate the value, and they spit out distressingly different results. But last year's surprising capture of gravitational waves radiating from a neutron star collision offered a third way to calculate the Hubble constant.

That was only a single data point from one collision, but in a new paper published Oct. 17 in Nature, three University of Chicago scientists estimate that given how quickly researchers saw the first neutron star collision, they could have a very accurate measurement of the Hubble constant within five to ten years.

"The Hubble constant tells you the size and the age of the universe; it's been a holy grail since the birth of cosmology. Calculating this with gravitational waves could give us an entirely new perspective on the universe," said study author Daniel Holz, a UChicago professor in physics who co-authored the first such calculation from the 2017 discovery. "The question is: When does it become game-changing for cosmology?"

In 1929, Edwin Hubble announced that based on his observations of galaxies beyond the Milky Way, they seemed to be moving away from us - and the farther away the galaxy, the faster it was receding. This is a cornerstone of the Big Bang theory, and it kicked off a nearly century-long search for the exact rate at which this is occurring.

To calculate the rate at which the universe is expanding, scientists need two numbers. One is the distance to a faraway object; the other is how fast the object is moving away from us because of the expansion of the universe. If you can see it with a telescope, the second quantity is relatively easy to determine, because the light you see when you look at a distant star gets shifted into the red as it recedes. Astronomers have been using that trick to see how fast an object is moving for more than a century - it's like the Doppler effect, in which a siren changes pitch as an ambulance passes.Learn more >>

Studying the stars with machine learning
November 12, 2018
Studying the stars with machine learning
by Evelyn Lamb, Symmetry Magazine

To keep up with an impending astronomical increase in data about our universe, astrophysicists turn to machine learning.

Kevin Schawinski had a problem.

In 2007 he was an astrophysicist at Oxford University and hard at work reviewing seven years' worth of photographs from the Sloan Digital Sky Survey - images of more than 900,000 galaxies. He spent his days looking at image after image, noting whether a galaxy looked spiral or elliptical, or logging which way it seemed to be spinning.

Technological advancements had sped up scientists' ability to collect information, but scientists were still processing information at the same rate. After working on the task full time and barely making a dent, Schawinski and colleague Chris Lintott decided there had to be a better way to do this.

There was: a citizen science project called Galaxy Zoo. Schawinski and Lintott recruited volunteers from the public to help out by classifying images online. Showing the same images to multiple volunteers allowed them to check one another's work. More than 100,000 people chipped in and condensed a task that would have taken years into just under six months.

Citizen scientists continue to contribute to image-classification tasks. But technology also continues to advance.

The Dark Energy Spectroscopic Instrument, scheduled to begin in 2019, will measure the velocities of about 30 million galaxies and quasars over five years. The Large Synoptic Survey Telescope, scheduled to begin in the early 2020s, will collect more than 30 terabytes of data each night - for a decade.

"The volume of datasets [from those surveys] will be at least an order of magnitude larger," says Camille Avestruz, a postdoctoral researcher at the University of Chicago.

To keep up, astrophysicists like Schawinski and Avestruz have recruited a new class of non-scientist scientists: machines.

Researchers are using artificial intelligence to help with a variety of tasks in astronomy and cosmology, from image analysis to telescope scheduling.

Superhuman scheduling, computerized calibration
Artificial intelligence is an umbrella term for ways in which computers can seem to reason, make decisions, learn, and perform other tasks that we associate with human intelligence. Machine learning is a subfield of artificial intelligence that uses statistical techniques and pattern recognition to train computers to make decisions, rather than programming more direct algorithms.

In 2017, a research group from Stanford University used machine learning to study images of strong gravitational lensing, a phenomenon in which an accumulation of matter in space is dense enough that it bends light waves as they travel around it.

Because many gravitational lenses can't be accounted for by luminous matter alone, a better understanding of gravitational lenses can help astronomers gain insight into dark matter.

In the past, scientists have conducted this research by comparing actual images of gravitational lenses with large numbers of computer simulations of mathematical lensing models, a process that can take weeks or even months for a single image. The Stanford team showed that machine learning algorithms can speed up this process by a factor of millions.

Schawinski, who is now an astrophysicist at ETH Zurich, uses machine learning in his current work. His group has used tools called generative adversarial networks, or GAN, to recover clean versions of images that have been degraded by random noise. They recently published a paper about using AI to generate and test new hypotheses in astrophysics and other areas of research.

Another application of machine learning in astrophysics involves solving logistical challenges such as scheduling. There are only so many hours in a night that a given high-powered telescope can be used, and it can only point in one direction at a time. "It costs millions of dollars to use a telescope for on the order of weeks," says Brian Nord, a physicist at the University of Chicago and part of Fermilab's Machine Intelligence Group, which is tasked with helping researchers in all areas of high-energy physics deploy AI in their work.Learn more >>