In the News, 2017
Research reinforces role of supernovae in clocking the universe
January 4, 2017
Supernova G299
New research confirms the role Type Ia supernovae, like G299 pictured above, play in measuring universe expansion.
Courtesy of NASA
by Greg Borzo, UChicago News

How much light does a supernova shed on the history of universe?

New research by cosmologists at the University of Chicago and Wayne State University confirms the accuracy of Type Ia supernovae in measuring the pace at which the universe expands. The findings support a widely held theory that the expansion of the universe is accelerating and such acceleration is attributable to a mysterious force known as dark energy. The findings counter recent headlines that Type Ia supernova cannot be relied upon to measure the expansion of the universe.

Using light from an exploding star as bright as entire galaxies to determine cosmic distances led to the 2011 Nobel Prize in physics. The method relies on the assumption that, like lightbulbs of a known wattage, all Type Ia supernovae are thought to have nearly the same maximum brightness when they explode. Such consistency allows them to be used as beacons to measure the heavens. The weaker the light, the farther away the star. But the method has been challenged in recent years because of findings the light given off by Type Ia supernovae appears more inconsistent than expected.

"The data that we examined are indeed holding up against these claims of the demise of Type Ia supernovae as a tool for measuring the universe," said Daniel Scolnic, a postdoctoral scholar at UChicago's Kavli Institute for Cosmological Physics and co-author of the new research published in Monthly Notices of the Royal Astronomical Society. "We should not be persuaded by these other claims just because they got a lot of attention, though it is important to continue to question and strengthen our fundamental assumptions."

One of the latest criticisms of Type Ia supernovae for measurement concluded the brightness of these supernovae seems to be in two different subclasses, which could lead to problems when trying to measure distances. In the new research led by David Cinabro, a professor at Wayne State, Scolnic, Rick Kessler, a senior researcher at the Kavli Institute, and others, they did not find evidence of two subclasses of Type Ia supernovae in data examined from the Sloan Digital Sky Survey Supernovae Search and Supernova Legacy Survey. The recent papers challenging the effectiveness of Type Ia supernovae for measurement used different data sets.

A secondary criticism has focused on the way Type Ia supernovae are analyzed. When scientists found that distant Type Ia supernovae were fainter than expected, they concluded the universe is expanding at an accelerating rate. That acceleration is explained through dark energy, which scientists estimate makes up 70 percent of the universe. The enigmatic force pulls matter apart, keeping gravity from slowing down the expansion of the universe.

Yet a substance that makes up 70 percent of the universe but remains unknown is frustrating to a number of cosmologists. The result was a reevaluation of the mathematical tools used to analyze supernovae that gained attention in 2015 by arguing that Type Ia supernovae don't even show dark energy exists in the first place.

Scolnic and colleague Adam Riess, who won the 2011 Nobel Prices for the discovery of the accelerating universe, wrote an article for Scientific American Oct. 26, 2016, refuting the claims. They showed that even if the mathematical tools to analyze Type Ia supernovae are used "incorrectly," there is still a 99.7 percent chance the universe is accelerating.

The new findings are reassuring for researchers who use Type Ia supernovae to gain an increasingly precise understanding of dark energy, said Joshua A. Frieman, senior staff member at the Fermi National Accelerator Laboratory who was not involved in the research.

"The impact of this work will be to strengthen our confidence in using Type Ia supernovae as cosmological probes," he said.

Citation: "Search for Type Ia Supernova NUV-Optical Subclasses," by David Cinabro and Jake Miller (Wayne State University); and Daniel Scolnic and Ashley Li (Kavli Institute for Cosmological Physics at the University of Chicago); and Richard Kessler (Kavli Institute for Cosmological Physics at University of Chicago and the Department of Astronomy and Astrophysics at the University of Chicago). Monthly Notices of the Royal Astronomical Society, November 2016. DOI: 10.1093/mnras/stw3109"Learn more >>

Cosmos Controversy: The Universe Is Expanding, but How Fast?
February 21, 2017
by Dennis Overbye, The New York Times

A small discrepancy in the value of a long-sought number has fostered a debate about just how well we know the cosmos.

There is a crisis brewing in the cosmos, or perhaps in the community of cosmologists. The universe seems to be expanding too fast, some astronomers say. Recent measurements of the distances and velocities of faraway galaxies don't agree with a hard-won "standard model" of the cosmos that has prevailed for the past two decades. The latest result shows a 9 percent discrepancy in the value of a long-sought number called the Hubble constant, which describes how fast the universe is expanding. But in a measure of how precise cosmologists think their science has become, this small mismatch has fostered a debate about just how well we know the cosmos. "If it is real, we will learn new physics," said Wendy Freedman of the University of Chicago, who has spent most of her career charting the size and growth of the universe.

Michael S. Turner of the University of Chicago said, "If the discrepancy is real, this could be a disruption of the current highly successful standard model of cosmology and just what the younger generation wants - a chance for big discoveries, new insights and breakthroughs."Learn more >>

Abigail Vieregg has been awarded a Sloan Research Fellowship
February 21, 2017
Abigail Vieregg has been awarded a Sloan Research Fellowship
The University of Chicago News Office

Five UChicago faculty members have earned 2017 Sloan Research Fellowships: Bryan Dickinson, assistant professor of chemistry; Suriyanarayanan Vaikuntanathan, assistant professor of chemistry; Joseph Vavra, associate professor of economics at the University of Chicago Booth School of Business; Abigail Vieregg, assistant professor of physics; and Alessandra Voena, associate professor of economics.

Abigail Vieregg is interested in answering questions about the nature of the universe at its highest energies through experimental work in particle astrophysics and cosmology. In particle astrophysics, she focuses on searching for the highest energy neutrinos that come from the most energetic sources in the universe. In cosmology, Vieregg works with a suite of telescopes at the South Pole to help determine what happened during the first moments after the Big Bang by measuring the polarization of the cosmic microwave background.

Vieregg was a NASA Earth and Space Sciences Graduate Fellow at UCLA and a National Science Foundation Office of Polar Programs Postdoctoral Fellow at the Harvard-Smithsonian Center for Astrophysics.

Vieregg joined the UChicago faculty in 2014.Learn more >>

New World-Leading Limit on Dark Matter Search from PICO Experiment
February 27, 2017
New World-Leading Limit on Dark Matter Search from PICO Experiment

The PICO Collaboration is excited to announce that the PICO-60 dark matter bubble chamber experiment has produced a new dark matter limit after analysis of data from the most recent run. This new result is a factor of 17 improvement in the limit for spin-dependent WIMP-proton cross-section over the already world-leading limits from PICO-2L run-2 and PICO-60 CF3I run-1 in 2016.

The PICO-60 experiment is currently the world's largest bubble chamber in operation; it is filled with 52 kg of C3F8 (octafluoropropane) and is taking data in the ladder lab area of SNOLAB. The detector uses the target fluid in a superheated state such that a dark matter particle interaction with a fluorine nucleus causes the fluid to boil and creates a tell tale bubble in the chamber.

The PICO experiment uses digital cameras to see the bubbles and acoustic pickups to improve the ability to distinguish between dark matter particles and other sources when analysing the data.

The superheated detector technology has been at the forefront of spin-dependent (SD) searches, using various refrigerant targets including CF3I, C4F10 and C2ClF5, and two primary types of detectors: bubble chambers and droplet detectors. PICO is the leading experiment in the direct detection of dark matter for spin-dependent couplings and is developing a much larger version of the experiment with up to 500 kg of active mass.

The PICO Collaboration would like to acknowledge the support of the National Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding.

This work was also supported by the U.S. Department of Energy Office of Science and the US National Science Foundation under Grants PHY-1242637, PHY-0919526, PHY-1205987 and PHY-1506377, and in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant PHY-1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli.Learn more >>

Researchers Provide New Insight Into Dark Matter Halos
April 19, 2017
An image of a simulated galaxy cluster showing evidence for a boundary, or "edge" from a 2015 paper in the Astrophysical Journal ("The Splashback Radius as a Physical Halo Boundary and the Growth of Halo Mass", The Astrophysical Journal, Volume 810, Issue 1, article id. 36, 16 pp., 2015) by Surhud More, Benedikt Diemer and Andrey Kravtsov.
University of Pennsylvania

Many scientists now believe that more than 80 percent of the matter of the universe is locked away in mysterious, as yet undetected, particles of dark matter, which affect everything from how objects move within a galaxy to how galaxies and galaxy clusters clump together in the first place.

This dark matter extends far beyond the reach of the furthest stars in the galaxy, forming what scientists call a dark matter halo. While stars within the galaxy all rotate in a neat, organized disk, these dark matter particles are like a swarm of bees, moving chaotically in random directions, which keeps them puffed up to balance the inward pull of gravity.

Bhuvnesh Jain, a physics professor in Penn's School of Arts & Sciences, and postdoc Eric Baxter are conducting research that could give new insights into the structure of these halos.

The researchers wanted to investigate whether these dark matter halos have an edge or boundary.

"People have generally imagined a pretty smooth transition from the matter bound to the galaxy to the matter between galaxies, which is also gravitationally attracted to the galaxies and clusters," Jain said. "But theoretically, using computer simulations a few years ago, researchers at the University of Chicago showed that for galaxy clusters a sharp boundary is expected, providing a distinct transition that we should be able to see through a careful analysis of the data."

Using a galaxy survey called the Sloan Digital Sky Survey, or SDSS, Baxter and Jain looked at the distribution of galaxies around clusters. They formed a team of experts at the University of Chicago and other institutions around the world to examine thousands of galaxy clusters. Using statistical tools to do a joint analysis of several million galaxies around them, they found a drop at the edge of the cluster. Baxter and collaborator Chihway Chang at the University of Chicago led a paper reporting the findings, accepted for publication in the Astrophysical Journal.Learn more >>

Virtual Earth-sized telescope aims to capture first image of a black hole
April 21, 2017
Illustration of the environment around the supermassive black hole Sagittarius A*, located some 26,000 light years away at the center the Milky Way.

Illustration by NASA/CXC/M.Weiss
by Greg Borzo, UChicago News

UChicago-led South Pole Telescope part of international effort to study event horizon

A powerful network of telescopes around the Earth is attempting to create the first image of a black hole, an elusive gravitational sinkhole that Albert Einstein first predicted in 1915.

The UChicago-led South Pole Telescope is part of the Event Horizon Telescope, which combines eight observatories in six locations to create a virtual Earth-sized telescope so powerful it could spot a nickel on the surface of the moon. Scientists spent ten days in April gathering data on Sagittarius A*, a black hole at the center of the Milky Way, as well as a supermassive black hole about 1,500 times heavier at the center of galaxy M87.

Each radio-wave observatory collected so much data that it could not be transmitted electronically. Instead, it was downloaded onto more than 1,000 hard drives and flown to the project's data analysis centers at the MIT Haystack Observatory in Westford, Mass., and the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Over the next year, supercomputers will correlate, combine and interpret the data using very long baseline interferometry, a procedure common in astronomy but never implemented on such an enormous scale. The goal is to produce an image of the event horizon, the boundary of a black hole where luminous gases burn at tens of millions of degrees and from which nothing escapes, not even light.

"It all came together for us: telescopes with higher resolutions, better experiments, more computer power, bright ideas, good weather conditions and so on," said John Carlstrom, the Subramanyan Chandrasekhar Distinguished Service Professor of Astronomy and Astrophysics at UChicago, who leads the South Pole Telescope collaboration. "I'm very confident that we'll come up with not only a good image, but a better understanding of black holes and gravity."

The telescopes in the network employ radio dishes that can detect very short wavelengths, even less than a millimeter -- the shorter the wavelength, the higher the resolution. Water, dust and clouds of gas can block radio waves, so the telescopes in Event Horizon were selected, in part, for being located in deserts, dry plateaus and mountaintops. Nevertheless, a storm or high winds could have ruined data collection.

Astronomers have taken aim at black holes before, but the big difference this time comes from incorporating the new Atacama Large Millimeter/submillimeter Array and the South Pole Telescope into the virtual network. Located high in the mountains of Chile, ALMA is the most complex astronomical observatory ever built, using 66 high-precision dish antennas with a total collecting area of more than 71,000 square feet. The South Pole Telescope provides the critical north-south resolving power to pick apart the details of Sagittarius A*.

"ALMA is the key to this experiment," Carlstrom said. "It gives us great sensitivity and at the incredibly short wavelength of 1.3 millimeters. But next year we'll repeat this experiment at 0.8 millimeters to get an even higher resolution.

"We'll always be pushing the limits," he added.Learn more >>

Michael Turner has been elected to American Philosophical Society
May 4, 2017
Michael Turner has been elected to American Philosophical Society
by Ryan Goodwin, UChicago News

Three UChicago faculty members have been elected to the American Philosophical Society, the oldest learned society in the United States.

They are Lorraine Daston, visiting professor in the John U. Nef Committee on Social Thought; Neil H. Shubin, the Robert R. Bensley Distinguished Service Professor of Organismal Biology and Anatomy; and Michael S. Turner, the Bruce V. and Diana M. Rauner Distinguished Service Professor.

Michael S. Turner is a theoretical cosmologist who helped to pioneer the interdisciplinary field that combines particle astrophysics and cosmology. His research focuses on the earliest moments of creation, and he has made seminal contributions to theories surrounding dark matter, dark energy and inflation. A former chair of UChicago's Department of Astronomy & Astrophysics, Turner currently serves as director of the Kavli Institute for Cosmological Physics.

Turner chaired the National Research Council's Committee on the Physics of the Universe, which published the influential report, "Connecting Quarks with the Cosmos." He previously served as assistant director for mathematical and physical sciences at the National Science Foundation, the chief scientist of Argonne National Laboratory and the president of the American Physical Society.

Turner is a member of the National Academy of Sciences and the American Academy of Arts and Sciences. He has received numerous honors, including the 2010 Dannie Heineman Prize for pioneering cosmological physics research from the American Astronomical Society and the American Institute of Physics, and was selected by the University of Chicago to deliver the 2013 Ryerson Lecture.Learn more >>

World's most sensitive dark matter detector releases first results
May 18, 2017
XENON1T installation in the underground hall of Laboratori Nazionali del Gran Sasso. The three story building on the right houses various auxiliary systems. The cryostat containing the LXeTPC is located inside the large water tank on the left.
Photo by Roberto Corrieri and Patrick De Perio
UChicago News

Scientists behind XENON1T, the largest dark matter experiment of its kind ever built, are encouraged by early results, describing them as the best so far in the search for dark matter.

Dark matter is one of the basic constituents of the universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, leading to an international effort to observe it directly. Scientists are trying to detect dark matter particle interacting with ordinary matter through the use of extremely sensitive detectors. Such interactions are so feeble that they have escaped direct detection to date, forcing scientists to build detectors that are more and more sensitive and have extremely low levels of radioactivity.

On May 18, the XENON Collaboration released results from a first, 30-day run of XENON1T, showing the detector has a record low radioactivity level, many orders of magnitude below surrounding material on earth.

"The care that we put into every single detail of the new detector is finally paying back," said Luca Grandi, assistant professor in physics at the University of Chicago and member of the XENON Collaboration. "We have excellent discovery potential in the years to come because of the huge dimension of XENON1T and its incredibly low background. These early results already are allowing us to explore regions never explored before."

The XENON Collaboration consists of 135 researchers from the United States, Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates, who hope to one day confirm dark matter's existence and shed light on its mysterious properties.

Located deep below a mountain in central Italy, XENON1T features a 3.2-ton xenon dual-phase time projection chamber. This central detector sits fully submersed in the middle of the water tank, in order to shield it from natural radioactivity in the cavern. A cryostat helps keep the xenon at a temperature of minus-95 degrees Celsius without freezing the surrounding water. The mountain above the laboratory further shields the detector, preventing it from being perturbed by cosmic rays.

But shielding from the outer world is not enough, since all materials on Earth contain tiny traces of natural radioactivity. Thus extreme care was taken to find, select and process the materials making up the detector to achieve the lowest possible radioactive content. This allowed XENON1T to achieve record "silence" necessary to detect the very weak output of dark matter.

A particle interaction in the one-ton central core of the time projection chamber leads to tiny flashes of light. Scientists record and study these flashes to infer the position and the energy of the interacting particle -- and whether it might be dark matter.

Despite the brief 30-day science run, the sensitivity of XENON1T has already overcome that of any other experiment in the field probing unexplored dark matter territory.

"For the moment we do not see anything unexpected, so we set new constraints on dark matter properties," Grandi said. "But XENON1T just started its exciting journey and since the end of the 30-day science run, we have been steadily accumulating new data."
UChicago central to international collaboration

Grandi's group is very active within XENON1T, and it is contributing to several aspects of the program. After its initial involvement in the preparation, assembly and early operations of the liquid xenon chamber, the group shifted its focus in the last several months to the development of the computing infrastructure and to data analysis.

"Despite its low background, XENON1T is producing a large amount of data that needs to be continuously processed," said Evan Shockley, a graduate student working with Grandi. "The raw data from the detector are directly transferred from Gran Sasso Laboratory to the University of Chicago, serving as the unique distribution point for the entire collaboration."

The framework, developed in collaboration with a group led by Robert Gardner, senior fellow at the Computation Institute, allows for the processing of data, both on local and remote resources belonging to the Open Science Grid. The involvement of UChicago's Research Computing Center including Director Birali Runesha allows members of the collaboration all around the world to access processed data for high-level analyses.

Grandi's group also has been heavily involved in the analysis that led to this first result. Christopher Tunnell, a fellow at the Kavli Institute for Cosmological Physics, is one of the two XENON1T analysis coordinators and corresponding author of the result. Recently, UChicago hosted about 25 researchers for a month to perform the analyses that led to the first results.

"It has been a large, concentrated effort and seeing XENON1T back on the front line makes me forget the never-ending days spent next to my colleagues to look at plots and distributions," Tunnell said. "There is no better thrill than leading the way in our knowledge of dark matter for the coming years."Learn more >>

Chicago Ideas Week: "Space Exploration: What's After The Final Frontier?"
May 23, 2017
Chicago Ideas Week: "Space Exploration: What's After The Final Frontier?"

Reach for the stars with some of the country's leading astronomers. Human beings have wondered about the universe for centuries, but it is only within the last 70 years that we've begun venturing into space. Should we continue that effort? How are experts working towards the next era of space exploration? From NASA to private enterprises to citizen scientists, find out humanity's next frontier of space exploration.

What Does the Universe Actually Look Like?
Humans can only see a small spectrum of wavelengths, but the universe contains much more than we can actually see. Angela Olinto, chair of the department of astronomy at the University of Chicago, is working to bridge that gap.
Angela Olinto
Homer J. Livingston Distinguished Service Professor; Department of Astronomy and Astrophysics, University of Chicago
Angela Olinto is the Homer J. Livingston Distinguished Service Professor and chair of the department of astronomy and astrophysics at the University of Chicago. Olinto received her B.S. from PUC, Rio de Janeiro, and her Ph.D. from MIT. She has made significant contributions to a number of topics in astrophysics and is the PI of the EUSO-SPB mission (Extreme Universe Space Observatory on a Super-Pressure Balloon) and a member of the Pierre Auger Observatory, both designed to discover the origin of the highest energy cosmic rays.

Astrophysics and Unlocking the Universe
When it comes to scientific discover on how the universe works, what we know is just as important as what we thought we knew. Rocky Kolb and Hakeem Oluseyi sit down to discuss the most compelling research in quantum physics going on today.
Rocky Kolb
Dean of Physical Sciences, University of Chicago
Edward W. Kolb (known to most as Rocky) is the Arthur Holly Compton Distinguished Service Professor of Astronomy & Astrophysics and the Dean of the Physical Sciences at the University of Chicago, as well as a member of the Enrico Fermi Institute and the Kavli Institute for Cosmological Physics. In 1983, he was a founding head of the Theoretical Astrophysics Group and in 2004 the founding Director of the Particle Astrophysics Center at Fermi National Accelerator Laboratory in Batavia, Illinois.

Kolb is a Fellow of the American Academy of Arts and Sciences and a Fellow of the American Physical Society. He was the recipient of the 2003 Oersted Medal of the American Association of Physics Teachers for notable contributions to the teaching of physics, the 1993 Quantrell Prize for teaching excellence at the University of Chicago and the 2009 Excellence in Teaching Award from the Graham School of the University of Chicago. His book for the general public, "Blind Watchers of the Sky," received the 1996 Emme Award of the American Aeronautical Society.

The field of Rocky's research is the application of elementary-particle physics to the very early Universe. In addition to over 200 scientific papers, he is a co-author of "The Early Universe," the standard textbook on particle physics and cosmology.

LIGO detects colliding black holes for third time
June 1, 2017
Reconstructions of the three confident and one candidate gravitational wave signals that LIGO has detected to date, including the most recent detection (GW170104). Believed to truly be millions of years long, only the portion of each signal that LIGO was sensitive to is shown here -- the final seconds leading up to the black hole merger.

Courtesy of LSC/University of Chicago/Ben Farr
UChicago News

UChicago scientists: Results help unveil diversity of black holes in the universe

The Laser Interferometer Gravitational-Wave Observatory has made a third detection of gravitational waves, providing the latest confirmation that a new window in astronomy has opened. As was the case with the first two detections, the waves -- ripples in spacetime -- were generated when two black holes collided to form a larger black hole.

The latest findings by the LIGO observatory, described in a new paper accepted for publication in Physical Review Letters, builds upon the landmark discovery in 2015 of gravitational waves, which Albert Einstein predicted a century earlier in his theory of general relativity.

"The UChicago LIGO group has played an important role in this latest discovery, including helping to discern what emitted the gravitational waves, testing whether Einstein's theory of general relativity was correct, and exploring whether electromagnetic radiation -- such as visible light, radio, or X-rays -- were also emanated by the black hole collision," said Daniel Holz, associate professor in Physics and Astronomy & Astrophysics, and head of UChicago's LIGO group.

The new detection occurred during LIGO's current observing run, which began Nov. 30, 2016, and will continue through the summer. The newfound black hole formed by the merger has a mass about 49 times that of our sun. The discovery fills in a gap between the systems previously detected by LIGO, with masses of 62 and 21 times that of our sun for the first and second detections, respectively.

"We continue to learn more about this population of heavy stellar-mass black holes, with masses over 20 solar masses, that LIGO has discovered," said LIGO collaborator Ben Farr, a McCormick Fellow at UChicago's Enrico Fermi Institute. "LIGO is making the most direct and pristine observations of black holes that have ever been made, and we're taking large strides in our understanding of how and where these black holes are formed."

LIGO made the first direct observation of gravitational waves in September 2015 during its first observing run. The second detection was made in December 2015, and the third detection, called GW170104, was made on Jan. 4, 2017.

In all three cases, each of the twin detectors of LIGO observed gravitational waves from the tremendously energetic mergers of black hole pairs. The collisions produce more power than is radiated by all of the stars in all of the galaxies in the entire observable universe. The recent detection is the farthest one yet, with the black holes located about 3 billion light-years away. The black holes in the first and second detections were located 1.3 billion and 1.4 billion light-years away, respectively.

"It is truly remarkable that, 100 years after the formulation of general relativity, we are now directly observing some of the most interesting predictions of this theory," said LIGO collaborator Robert Wald, the Charles H. Swift Distinguished Service Professor in Physics at UChicago. "LIGO has opened an entirely new window on our ability to observe phenomena involving strong gravitational fields, and we can look forward to its providing us with many further observations of great astrophysical and cosmological significance in the coming years."

'Looks like Einstein was right'
The LIGO Scientific Collaboration is an international collaboration whose observations are carried out by twin detectors -- one in Hanford, Wash., and the other in Livingston, La. -- operated by California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation.

The discoveries from LIGO are once again putting Albert Einstein's theories to the test. For example, the researchers looked for an effect called dispersion, in which light waves in a physical medium travel at different speeds depending on their wavelength -- the same way a prism creates a rainbow.

Einstein's general theory of relativity forbids dispersion from happening in gravitational waves as they propagate from their source to Earth, and LIGO's latest detection is consistent with this prediction.

"It looks like Einstein was right -- even for this new event, which is about two times farther away than our first detection," said Laura Cadonati, associate professor of physics at Georgia Institute of Technology and deputy spokesperson for the LIGO Scientific Collaboration. "We can see no deviation from the predictions of general relativity, and this greater distance helps us to make that statement with more confidence."

The LIGO team working with the Virgo Collaboration is continuing to search the latest LIGO data for signs of space-time ripples from the far reaches of the cosmos. They also are working on technical upgrades for LIGO's next run, scheduled to begin in late 2018, during which the detectors' sensitivity will be improved.

"With the detection of GW170104, we are taking another important step toward gravitational-wave astronomy," Holz said. "We now have three solid detections, and these provide our first hints about the diversity of black hole systems in the universe."

LIGO is funded by the National Science Foundation. More than 1,000 scientists from around the world participate in the effort through the LIGO Scientific Collaboration and Virgo Collaboration.Learn more >>

Third Gravitational Wave Detection, From Black-Hole Merger 3 Billion Light Years Away
June 8, 2017
by Dennis Overbye, The New York Times

This is the third black-hole smashup that astronomers have detected since they started keeping watch on the cosmos back in September 2015, with LIGO, the Laser Interferometer Gravitational-Wave Observatory. All of them are more massive than the black holes that astronomers had previously identified as the remnants of dead stars.


As for the original stellar identities of these dark dancers, the consensus, said Daniel Holz of the University of Chicago, is that they were probably very massive and primitive stars at least 40 times heavier than the sun.

According to theoretical calculations, stars composed of primordial hydrogen and helium and lacking heavier elements like oxygen and carbon, which astronomers with their knack for nomenclature call "metals," can grow monstrously large. They could collapse directly into black holes when their brief violent lives were over without the benefit of a supernova explosion or other cosmic fireworks.

Dr. Holz said in an email: "It is indeed odd to think that some of the most dramatic stellar collapse do not result in massive stellar explosions outshining galaxies, but instead just involve a star winking out of existence. But that's what the theory says should happen."Learn more >>