In the News, 2017
Research reinforces role of supernovae in clocking the universe
January 4, 2017
Supernova G299
New research confirms the role Type Ia supernovae, like G299 pictured above, play in measuring universe expansion.
Courtesy of NASA
by Greg Borzo, UChicago News

How much light does a supernova shed on the history of universe?

New research by cosmologists at the University of Chicago and Wayne State University confirms the accuracy of Type Ia supernovae in measuring the pace at which the universe expands. The findings support a widely held theory that the expansion of the universe is accelerating and such acceleration is attributable to a mysterious force known as dark energy. The findings counter recent headlines that Type Ia supernova cannot be relied upon to measure the expansion of the universe.

Using light from an exploding star as bright as entire galaxies to determine cosmic distances led to the 2011 Nobel Prize in physics. The method relies on the assumption that, like lightbulbs of a known wattage, all Type Ia supernovae are thought to have nearly the same maximum brightness when they explode. Such consistency allows them to be used as beacons to measure the heavens. The weaker the light, the farther away the star. But the method has been challenged in recent years because of findings the light given off by Type Ia supernovae appears more inconsistent than expected.

"The data that we examined are indeed holding up against these claims of the demise of Type Ia supernovae as a tool for measuring the universe," said Daniel Scolnic, a postdoctoral scholar at UChicago's Kavli Institute for Cosmological Physics and co-author of the new research published in Monthly Notices of the Royal Astronomical Society. "We should not be persuaded by these other claims just because they got a lot of attention, though it is important to continue to question and strengthen our fundamental assumptions."

One of the latest criticisms of Type Ia supernovae for measurement concluded the brightness of these supernovae seems to be in two different subclasses, which could lead to problems when trying to measure distances. In the new research led by David Cinabro, a professor at Wayne State, Scolnic, Rick Kessler, a senior researcher at the Kavli Institute, and others, they did not find evidence of two subclasses of Type Ia supernovae in data examined from the Sloan Digital Sky Survey Supernovae Search and Supernova Legacy Survey. The recent papers challenging the effectiveness of Type Ia supernovae for measurement used different data sets.

A secondary criticism has focused on the way Type Ia supernovae are analyzed. When scientists found that distant Type Ia supernovae were fainter than expected, they concluded the universe is expanding at an accelerating rate. That acceleration is explained through dark energy, which scientists estimate makes up 70 percent of the universe. The enigmatic force pulls matter apart, keeping gravity from slowing down the expansion of the universe.

Yet a substance that makes up 70 percent of the universe but remains unknown is frustrating to a number of cosmologists. The result was a reevaluation of the mathematical tools used to analyze supernovae that gained attention in 2015 by arguing that Type Ia supernovae don't even show dark energy exists in the first place.

Scolnic and colleague Adam Riess, who won the 2011 Nobel Prices for the discovery of the accelerating universe, wrote an article for Scientific American Oct. 26, 2016, refuting the claims. They showed that even if the mathematical tools to analyze Type Ia supernovae are used "incorrectly," there is still a 99.7 percent chance the universe is accelerating.

The new findings are reassuring for researchers who use Type Ia supernovae to gain an increasingly precise understanding of dark energy, said Joshua A. Frieman, senior staff member at the Fermi National Accelerator Laboratory who was not involved in the research.

"The impact of this work will be to strengthen our confidence in using Type Ia supernovae as cosmological probes," he said.

Citation: "Search for Type Ia Supernova NUV-Optical Subclasses," by David Cinabro and Jake Miller (Wayne State University); and Daniel Scolnic and Ashley Li (Kavli Institute for Cosmological Physics at the University of Chicago); and Richard Kessler (Kavli Institute for Cosmological Physics at University of Chicago and the Department of Astronomy and Astrophysics at the University of Chicago). Monthly Notices of the Royal Astronomical Society, November 2016. DOI: 10.1093/mnras/stw3109"Learn more >>

Cosmos Controversy: The Universe Is Expanding, but How Fast?
February 21, 2017
by Dennis Overbye, The New York Times

A small discrepancy in the value of a long-sought number has fostered a debate about just how well we know the cosmos.

There is a crisis brewing in the cosmos, or perhaps in the community of cosmologists. The universe seems to be expanding too fast, some astronomers say. Recent measurements of the distances and velocities of faraway galaxies don't agree with a hard-won "standard model" of the cosmos that has prevailed for the past two decades. The latest result shows a 9 percent discrepancy in the value of a long-sought number called the Hubble constant, which describes how fast the universe is expanding. But in a measure of how precise cosmologists think their science has become, this small mismatch has fostered a debate about just how well we know the cosmos. "If it is real, we will learn new physics," said Wendy Freedman of the University of Chicago, who has spent most of her career charting the size and growth of the universe.

Michael S. Turner of the University of Chicago said, "If the discrepancy is real, this could be a disruption of the current highly successful standard model of cosmology and just what the younger generation wants - a chance for big discoveries, new insights and breakthroughs."Learn more >>

Abigail Vieregg has been awarded a Sloan Research Fellowship
February 21, 2017
Abigail Vieregg has been awarded a Sloan Research Fellowship
The University of Chicago News Office

Five UChicago faculty members have earned 2017 Sloan Research Fellowships: Bryan Dickinson, assistant professor of chemistry; Suriyanarayanan Vaikuntanathan, assistant professor of chemistry; Joseph Vavra, associate professor of economics at the University of Chicago Booth School of Business; Abigail Vieregg, assistant professor of physics; and Alessandra Voena, associate professor of economics.

Abigail Vieregg is interested in answering questions about the nature of the universe at its highest energies through experimental work in particle astrophysics and cosmology. In particle astrophysics, she focuses on searching for the highest energy neutrinos that come from the most energetic sources in the universe. In cosmology, Vieregg works with a suite of telescopes at the South Pole to help determine what happened during the first moments after the Big Bang by measuring the polarization of the cosmic microwave background.

Vieregg was a NASA Earth and Space Sciences Graduate Fellow at UCLA and a National Science Foundation Office of Polar Programs Postdoctoral Fellow at the Harvard-Smithsonian Center for Astrophysics.

Vieregg joined the UChicago faculty in 2014.Learn more >>

New World-Leading Limit on Dark Matter Search from PICO Experiment
February 27, 2017
New World-Leading Limit on Dark Matter Search from PICO Experiment

The PICO Collaboration is excited to announce that the PICO-60 dark matter bubble chamber experiment has produced a new dark matter limit after analysis of data from the most recent run. This new result is a factor of 17 improvement in the limit for spin-dependent WIMP-proton cross-section over the already world-leading limits from PICO-2L run-2 and PICO-60 CF3I run-1 in 2016.

The PICO-60 experiment is currently the world's largest bubble chamber in operation; it is filled with 52 kg of C3F8 (octafluoropropane) and is taking data in the ladder lab area of SNOLAB. The detector uses the target fluid in a superheated state such that a dark matter particle interaction with a fluorine nucleus causes the fluid to boil and creates a tell tale bubble in the chamber.

The PICO experiment uses digital cameras to see the bubbles and acoustic pickups to improve the ability to distinguish between dark matter particles and other sources when analysing the data.

The superheated detector technology has been at the forefront of spin-dependent (SD) searches, using various refrigerant targets including CF3I, C4F10 and C2ClF5, and two primary types of detectors: bubble chambers and droplet detectors. PICO is the leading experiment in the direct detection of dark matter for spin-dependent couplings and is developing a much larger version of the experiment with up to 500 kg of active mass.

The PICO Collaboration would like to acknowledge the support of the National Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding.

This work was also supported by the U.S. Department of Energy Office of Science and the US National Science Foundation under Grants PHY-1242637, PHY-0919526, PHY-1205987 and PHY-1506377, and in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant PHY-1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli.Learn more >>

Researchers Provide New Insight Into Dark Matter Halos
April 19, 2017
An image of a simulated galaxy cluster showing evidence for a boundary, or "edge" from a 2015 paper in the Astrophysical Journal ("The Splashback Radius as a Physical Halo Boundary and the Growth of Halo Mass", The Astrophysical Journal, Volume 810, Issue 1, article id. 36, 16 pp., 2015) by Surhud More, Benedikt Diemer and Andrey Kravtsov.
University of Pennsylvania

Many scientists now believe that more than 80 percent of the matter of the universe is locked away in mysterious, as yet undetected, particles of dark matter, which affect everything from how objects move within a galaxy to how galaxies and galaxy clusters clump together in the first place.

This dark matter extends far beyond the reach of the furthest stars in the galaxy, forming what scientists call a dark matter halo. While stars within the galaxy all rotate in a neat, organized disk, these dark matter particles are like a swarm of bees, moving chaotically in random directions, which keeps them puffed up to balance the inward pull of gravity.

Bhuvnesh Jain, a physics professor in Penn's School of Arts & Sciences, and postdoc Eric Baxter are conducting research that could give new insights into the structure of these halos.

The researchers wanted to investigate whether these dark matter halos have an edge or boundary.

"People have generally imagined a pretty smooth transition from the matter bound to the galaxy to the matter between galaxies, which is also gravitationally attracted to the galaxies and clusters," Jain said. "But theoretically, using computer simulations a few years ago, researchers at the University of Chicago showed that for galaxy clusters a sharp boundary is expected, providing a distinct transition that we should be able to see through a careful analysis of the data."

Using a galaxy survey called the Sloan Digital Sky Survey, or SDSS, Baxter and Jain looked at the distribution of galaxies around clusters. They formed a team of experts at the University of Chicago and other institutions around the world to examine thousands of galaxy clusters. Using statistical tools to do a joint analysis of several million galaxies around them, they found a drop at the edge of the cluster. Baxter and collaborator Chihway Chang at the University of Chicago led a paper reporting the findings, accepted for publication in the Astrophysical Journal.Learn more >>

Virtual Earth-sized telescope aims to capture first image of a black hole
April 21, 2017
Illustration of the environment around the supermassive black hole Sagittarius A*, located some 26,000 light years away at the center the Milky Way.

Illustration by NASA/CXC/M.Weiss
by Greg Borzo, UChicago News

UChicago-led South Pole Telescope part of international effort to study event horizon

A powerful network of telescopes around the Earth is attempting to create the first image of a black hole, an elusive gravitational sinkhole that Albert Einstein first predicted in 1915.

The UChicago-led South Pole Telescope is part of the Event Horizon Telescope, which combines eight observatories in six locations to create a virtual Earth-sized telescope so powerful it could spot a nickel on the surface of the moon. Scientists spent ten days in April gathering data on Sagittarius A*, a black hole at the center of the Milky Way, as well as a supermassive black hole about 1,500 times heavier at the center of galaxy M87.

Each radio-wave observatory collected so much data that it could not be transmitted electronically. Instead, it was downloaded onto more than 1,000 hard drives and flown to the project's data analysis centers at the MIT Haystack Observatory in Westford, Mass., and the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Over the next year, supercomputers will correlate, combine and interpret the data using very long baseline interferometry, a procedure common in astronomy but never implemented on such an enormous scale. The goal is to produce an image of the event horizon, the boundary of a black hole where luminous gases burn at tens of millions of degrees and from which nothing escapes, not even light.

"It all came together for us: telescopes with higher resolutions, better experiments, more computer power, bright ideas, good weather conditions and so on," said John Carlstrom, the Subramanyan Chandrasekhar Distinguished Service Professor of Astronomy and Astrophysics at UChicago, who leads the South Pole Telescope collaboration. "I'm very confident that we'll come up with not only a good image, but a better understanding of black holes and gravity."

The telescopes in the network employ radio dishes that can detect very short wavelengths, even less than a millimeter -- the shorter the wavelength, the higher the resolution. Water, dust and clouds of gas can block radio waves, so the telescopes in Event Horizon were selected, in part, for being located in deserts, dry plateaus and mountaintops. Nevertheless, a storm or high winds could have ruined data collection.

Astronomers have taken aim at black holes before, but the big difference this time comes from incorporating the new Atacama Large Millimeter/submillimeter Array and the South Pole Telescope into the virtual network. Located high in the mountains of Chile, ALMA is the most complex astronomical observatory ever built, using 66 high-precision dish antennas with a total collecting area of more than 71,000 square feet. The South Pole Telescope provides the critical north-south resolving power to pick apart the details of Sagittarius A*.

"ALMA is the key to this experiment," Carlstrom said. "It gives us great sensitivity and at the incredibly short wavelength of 1.3 millimeters. But next year we'll repeat this experiment at 0.8 millimeters to get an even higher resolution.

"We'll always be pushing the limits," he added.Learn more >>