Colloquia & Seminars, 2013
2013
DateColloquia & Seminars
January 9, 2013
3:30 PM
Wednesday colloquium
Marc Kamionkowski, Johns Hopkins University
Covering the Bases
January 18, 2013
12:00 PM
Friday noon seminar
Luigi Tibaldo, KIPAC - SLAC National Accelerator Laboratory
The Fermi LAT view of Cygnus: a laboratory to understand cosmic-ray acceleration and transport
January 23, 2013
3:30 PM
Wednesday colloquium
Ryan Keisler, The University of Chicago
New CMB Results from the South Pole Telescope
January 25, 2013
12:00 PM
Friday noon seminar
Troy Porter, Stanford University
Cosmic rays in the Milky Way and other galaxies
February 1, 2013
12:00 PM
Friday noon seminar
Emmanouil Papastergis, Cornell University
''Near-field'' cosmology with the ALFALFA survey
February 8, 2013
12:00 PM
Friday noon seminar
Guilhem Lavaux, University of Waterloo
Tracking Universe dynamics at large and small scales: cosmic voids and kSZ effects
February 13, 2013
3:30 PM
Wednesday colloquium
Mark Halpern, University of British Columbia
CMB Results from WMAP and ACT
February 15, 2013
12:00 PM
Friday noon seminar
Morag I Scrimgeour, University of Western Australia
Large-scale homogeneity vs. small-scale inhomogeneities: testing ΛCDM with large-scale structure
February 22, 2013
12:00 PM
Friday noon seminar
Keith Vanderlinde, U of Toronto
CHIME: 21cm and the Expanding Universe
February 27, 2013
3:30 PM
Wednesday colloquium
Jennifer Siegal-Gaskins, Caltech
Shedding light on dark matter and astrophysical sources with gamma-ray anisotropy
March 1, 2013
12:00 PM
Friday noon seminar
Ann Zabludoff, University of Arizona / Steward Observatory
Deficit Spending and the Cluster Baryon Budget
March 6, 2013
3:30 PM
Wednesday colloquium
Brian W O'Shea, Michigan State University
The secret lives of galaxy clusters
March 8, 2013
12:00 PM
Friday noon seminar
Mark C. Neyrinck, Johns Hopkins University
Gaussianization: How to Deal with Wrinkles in the Universe
March 22, 2013
12:00 PM
Friday noon seminar
Latham Boyle, Perimeter Institute
Gravitational Wave Telescopes, Time-Delay Interferometers and Choreographic Crystals
March 29, 2013
12:00 PM
Friday noon seminar
Austin Joyce, University of Pennsylvania
Symmetries of primordial perturbations
April 3, 2013
3:00 PM
Wednesday colloquium
Nikhil Padmanabhan, Yale University
Towards 1% measurements of cosmological distances with cosmic sound
April 5, 2013
12:00 PM
Friday noon seminar
Federico Sembolini, Universidad Autonoma de Madrid (Spain)
Exploring the properties of galaxy clusters with hydrodynamical simulations: the MUSIC dataset
April 10, 2013
3:00 PM
Wednesday colloquium
Alberto Nicolis, Columbia University
Effective Field Theories for Fluids and Superfluids
April 12, 2013
12:00 PM
Friday noon seminar
Aaron Chou, Fermilab
Probing gravitational microphysics with interferometers
April 19, 2013
12:00 PM
Friday noon seminar
Marco Ajello, Space Sciences Laboratory, University of California Berkeley
The Imprint of the Extragalactic Background Light in the gamma-ray spectra of blazars
April 26, 2013
12:00 PM
Friday noon seminar
Raul Angulo, KIPAC, Stanford
Successes and Limitations of Cosmological N-body Simulations
May 1, 2013
3:00 PM
Wednesday colloquium
Shufang Su, University of Arizona
Dark Matter at Colliders
May 3, 2013
12:00 PM
Friday noon seminar
Thomas Weisgarber, University of Wisconsin - Madison
The High Altitude Water Cherenkov Gamma Ray Observatory: Current Status and Future Prospects
May 10, 2013
12:00 PM
Friday noon seminar
Joel Meyers, Canadian Institute for Theoretical Astrophysics
Multiple-Field Inflation in the Post-Planck Era
May 17, 2013
12:00 PM
Friday noon seminar
Colin Bischoff, Harvard-Smithsonian Center for Astrophysics
Final Results from Three Years of Observations with the BICEP Telescope
May 24, 2013
12:00 PM
Friday noon seminar
Alyson Brooks, U Wisconsin Madison
The Influence of Baryons in Interpreting the Cosmological Model
May 29, 2013
3:00 PM
Wednesday colloquium
Nathan Whitehorn, University of Wisconsin - Madison
Observation of High Energy Neutrinos at IceCube
May 31, 2013
12:00 PM
Friday noon seminar
Juan Collar, The University of Chicago
Low-mass WIMPs: Confessions of a Nihilist
September 25, 2013
3:00 PM
Astronomy colloquium
Jeremiah P. Ostriker, Princeton University
Feedback from AGN In Massive Galaxies: The Importance of Momentum Driving
October 2, 2013
3:00 PM
Astronomy colloquium
Alex Lazarian, University of Wisconsin - Madison
Star formation regulated by magnetic reconnection
October 4, 2013
12:00 PM
Friday noon seminar
Shi Chun Su, DAMTP, University of Cambridge
Non-linear Boltzmann Equations on the Cosmic Microwave Background
October 9, 2013
3:00 PM
Wednesday colloquium
Wayne Hu, The University of Chicago
Foiling LCDM
October 11, 2013
12:00 PM
Friday noon seminar
Ryan J Cooke, University of California Santa Cruz
Precision measures of the primordial deuterium abundance
October 16, 2013
3:00 PM
Astronomy colloquium
Andrea M. Ghez, UCLA
The Galactic Center: Unveiling the Heart of our Galaxy
October 18, 2013
12:00 PM
Friday noon seminar
Peter Behroozi, Stanford University
What can Galaxy Evolution tell us about Short Gamma-Ray Bursts?
October 23, 2013
3:00 PM
Astronomy colloquium
Charlie Conroy, University of California, Santa Cruz
Extragalactic Archeology
October 25, 2013
12:00 PM
Friday noon seminar
Shy Genel, Harvard-CfA
The Illustris galaxy formation simulations: moving towards a realistic simulated Universe
October 30, 2013
3:00 PM
Wednesday colloquium
George Fuller, University of California, San Diego
Neutrino Quantum Spookiness: Collapsing Stars, Supernovae, and the Cosmos
November 1, 2013
12:00 PM
Friday noon seminar
Lee McCuller, Bobby Lanza, Jon Richardson and Brittany Kamai, Fermilab
Physics at the Fringe : A Status Report on the Fermilab Holometer
November 6, 2013
3:00 PM
Wednesday colloquium
Katrin Heitmann, The University of Chicago
Cosmic Calibration or: How I Learned to Stop Worrying and Love Supercomputers
November 8, 2013
12:00 PM
Friday noon seminar
Kurt Hinterbichler, Perimeter Institute
Partially massless gravity
November 13, 2013
3:00 PM
Wednesday colloquium
Tom Murphy, UCSD
Testing Gravity by Poking the Moon with a Laser
November 20, 2013
3:00 PM
Astronomy colloquium
Ruth Murray-Clay, Harvard-Smithsonian Center for Astrophysics
Origins of Gas Giant Planets
November 22, 2013
12:00 PM
Friday noon seminar
Annika Peter, The Ohio State University
WIMP physics with direct detection
November 26, 2013
3:00 PM
Astronomy colloquium
Joop Schaye, Leiden University
Cosmological simulations of the formation of galaxies
December 4, 2013
3:00 PM
Astronomy colloquium
Jordi Miralda-Escude, University of Barcelona
Large-Scale Structure in the intergalactic medium and the formation of galaxies: What we are learning from BOSS in SDSS-III
December 6, 2013
12:00 PM
Friday noon seminar
James Battat, Wellesley College
Directional Dark Matter Detection

Covering the Bases
January 9, 2013 | 3:30 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Marc Kamionkowski, Johns Hopkins University

One of the principal aims of cosmology today is to seek subtle correlations in primordial perturbations, beyond the standard two-point correlation that has been mapped precisely already, that may hint at new physics beyond that in the simplest single-field slow-roll models. I will describe in this talk a new class of such correlations and how they may be sought with galaxy surveys and in the CMB. I will then turn my attention to a new formalism, total-angular-momentum (TAM) waves, that my collaborators and I have recently developed. In most of the literature, cosmological perturbations are decomposed into Fourier modes, or plane waves. However, for calculations that aim to produce predictions for angular correlations on a spherical sky, a decomposition into TAM waves provides a far more direct and intuitive route from theory to observations. I will describe the formalism and illustrate with applications to cosmic shear, three-point correlation functions, and redshift-space distortions.

The Fermi LAT view of Cygnus: a laboratory to understand cosmic-ray acceleration and transport
January 18, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Gamma-ray emission detected by Fermi LAT (left) fills bubbles of hot gas created by the most massive stars in Cygnus X (right).

Credit: NASA/DOE/Fermi LAT Collaboration/I. A. Grenier and L. Tibaldo
Friday noon seminar
Luigi Tibaldo, KIPAC - SLAC National Accelerator Laboratory

The origin of cosmic rays (CRs) is a century-long puzzle. It is strongly advocated that Galactic CRs are accelerated by supernova remnant shockwaves. The CR isotopic composition and the fact that about 80% of the supernovae are produced by a massive-star core collapse establish a strong link between CR origin and massive-star forming regions. I will present the analysis of Fermi LAT observations of the Cygnus complex, which harbors the conspicuous massive-star forming region of Cygnus X at 1.4 kpc from the solar system. Gamma-ray observations can be used to trace CRs in the interstellar space interacting with the ambient gas and low-energy radiation fields. A 50-pc wide cocoon of freshly-accelerated CRs is detected in the region bounded by the ionization fronts from the young stellar clusters. On the other hand, the CR population averaged over the whole Cygnus complex on a scale of about 400 pc is similar to that found in the interstellar space near the Sun. I will discuss these results which confirm the long-standing hypothesis that massive-star forming regions host CR factories, which provide a test case to study the early phases of CR life in such a turbulent environment and which also shed a new light on the detections of TeV gamma-ray emission toward massive-star clusters.

New CMB Results from the South Pole Telescope
January 23, 2013 | 3:30 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Ryan Keisler, The University of Chicago

The South Pole Telescope (SPT) recently completed a 2500 square degree survey of the sky in the 3mm, 2mm and 1.4 mm bands with an unprecedented combination of resolution, area, and sensitivity. The data from this survey has enabled a number of studies, including the most precise measurement of the sub-degree primordial CMB anisotropy to date. This talk will review this measurement and the resulting cosmological constraints. The new SPT data, in conjunction with data from the WMAP satellite and low-redshift measurements, leads to strong constraints on the number of neutrino-like particle species present in the early universe, the sum of the neutrino masses, and the shape of the power spectrum of primordial density fluctuations. I will also give a brief update on the status of SPTpol, the new polarization-sensitive receiver on the SPT.

Cosmic rays in the Milky Way and other galaxies
January 25, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Troy Porter, Stanford University

Cosmic rays fill up the entire volume of galaxies, providing an important source of heating and ionisation of the interstellar medium, and may play a significant role in the regulation of star formation and evolution of galaxies. Diffuse emissions from radio to high-energy gamma rays (> 100 MeV) arising from various interactions between cosmic rays and the interstellar gas, radiation, and magnetic fields are currently the best way to trace the intensities and spectra of cosmic rays in the Milky Way and other galaxies. In this talk, I will give an overview of the observations of the cosmic-ray induced emissions from our own and other galaxies, in particular, results from the Fermi-LAT. I will also talk about what can be deduced about the cosmic-ray origin and propagation from these data.

''Near-field'' cosmology with the ALFALFA survey
February 1, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Emmanouil Papastergis, Cornell University

ALFALFA is a wide-area, blind 21cm survey of galaxies in the local universe (z<0.06), performed with the Arecibo radiotelescope. The latest public data release contains about 40% of the final 7000 sq.deg. survey sky coverage, and already contains the largest HI-selected galaxy sample to date. The combination of survey area and 21cm sensitivity of ALFALFA makes it ideal for addressing key questions in "near-filed" cosmology, such as the characteristics of the lowest mass galaxies and the properties of dark matter on sub-kpc scales. I will be presenting some recent results of the ALFALFA survey, relating to the properties of the lowest-mass field dwarf galaxies, the hunt for "missing satellites" and the clustering properties of HI-selected galaxies. The main focus of the talk will be on the recent statistical measurements of the abundance of galaxies as a function of their baryonic mass ("baryonic mass function of galaxies") and as a function of their rotational velocity ("velocity function of galaxies"). The former distribution can be used to infer the baryonic content (stars + neutral atomic gas) of dark matter halos, providing important constraints for hydrodynamic simulations of galaxy formation. The latter distribution can be used to test the halo mass function predicted by ΛCDM. In particular, a combined analysis of the abundance of low-mass galaxies and their internal gas kinematics may constitute an important new challenge of the standard cosmological model on galactic scales, corresponding to the field analog of the "too big to fail" ΛCDM challenge.

Tracking Universe dynamics at large and small scales: cosmic voids and kSZ effects
February 8, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Guilhem Lavaux, University of Waterloo

Non-linear phenomena has been insufficiently used to gather information on astrophysics and cosmology. I will present two examples of such phenomena that are particularly interesting to probe dynamics of the Universe on ultra large scale (expansion of the Universe) and large scale (bulk flows): cosmic voids and kinematic Sunyaev-Zel'dovich effect. First, we will see that cosmic voids are potentially interesting, theoretically and observationally, to probe the expansion and the energy content of the Universe. Second, I will show that kSZ can be more effectively detected by concentrating the effort on the plasma halo around galaxies, again highly non-linear, to probe large scale flows and locating missing baryons.

CMB Results from WMAP and ACT
February 13, 2013 | 3:30 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Mark Halpern, University of British Columbia

Acoustic processes in the plasma which pervades the early Universe govern the shape of the anisotropy of the cosmic background which has been measured by WMAP and other probes, notably ACT and the South Pole Telescope. I'll describe what we have learned, and what we have not learned from precise measurements of the temperature and polarization anisotropy of the CMB. Once the Universe became transparent, these acoustic signals stopped propagating. The density variations associated with them have remained fixed in co-moving (expanding) coordinates. I'll finish by talking about CHIME, the Canadian Hydrogen Intensity Mapping Experiment, CHIME, a collaboration to build a novel radio telescope designed to measure these same acoustic features at the much later epoch when cosmic acceleration from dark energy is important.

Large-scale homogeneity vs. small-scale inhomogeneities: testing ΛCDM with large-scale structure
February 15, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Morag I Scrimgeour, University of Western Australia

The most fundamental assumption of the standard cosmological model (ΛCDM) is that the Universe is homogeneous on large scales. This is not true on small scales, and some studies suggest that galaxies follow a fractal distribution up to very large scales (~200 h-1 Mpc or
more), whereas ΛCDM predicts homogeneity at ~100 h-1 Mpc. We have tested this using the WiggleZ Dark Energy Survey, a UV-selected spectroscopic survey of ~200,000 luminous blue galaxies up to z=1, with the Anglo-Australian Telescope. The large volume and depth of WiggleZ allows us to probe the transition of the galaxy distribution to homogeneity on large scales, and see if this is consistent with a ΛCDM prediction. Conversely, the properties of small-scale inhomogeneities are an important probe of cosmology. The growth of primordial density perturbations to the large-scale structures present in the Universe today depends on the interplay between cosmic expansion and gravitational interaction. We use N-body simulations to investigate ways galaxy peculiar velocities, arising from these density inhomogeneities, can be used as an independent probe of cosmology.

CHIME: 21cm and the Expanding Universe
February 22, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Keith Vanderlinde, U of Toronto

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an ambitious new project designed to map the distribution of matter in the Universe, over half the sky and a broad swath of cosmic history.

The newly-developed technique of Hydrogen Intensity (HI) mapping uses redshifted 21cm emission from neutral hydrogen as a 3D tracer of Large Scale Structure (LSS) in the Universe. Imprinted in the LSS is a remnant of the acoustic waves which propagated through the primordial plasma. This feature, the Baryon Acoustic Oscillation (BAO), manifests as a preferential separation scale between matter, and by charting the evolution of this scale over cosmic time, we can deduce the expansion history of the Universe.

Leveraging recent developments from from the cell phone industry (cheap, low noise amplifiers) and the huge growth in digital processing power, CHIME will be a highly efficient "digital" radio telescope, a many-antenna physically-fixed structure where beams are formed and pointed through digital processing rather than with physically steered dishes or cable delays. CHIME is composed of five 20m x 100m parabolic reflectors which focus radiation in one direction (east-west), while interferometry is used to resolve beams in the other (north-south), and earth rotation is used to sweep them across the sky.

I will discuss the motivation, design, and progress on both the full CHIME instrument and the 1/10th-scale Pathfinder which is currently under construction.

Shedding light on dark matter and astrophysical sources with gamma-ray anisotropy
February 27, 2013 | 3:30 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Jennifer Siegal-Gaskins, Caltech

Gamma rays probe the most energetic processes in the universe and are a promising tool to search for signatures of new physics. One current mystery in high-energy astrophysics is the origin of the diffuse gamma-ray background. The contribution of undetected sources is expected to induce small-scale anisotropies in this emission, and these may provide a means of identifying and constraining the properties of its contributors. I will review the results of the first anisotropy analysis of the diffuse gamma-ray background measured by the Fermi Large Area Telescope, and highlight the new constraints this measurement has placed on high-energy source populations, focusing on implications for blazar population models and for a signal from the annihilation or decay of dark matter particles. I will also present new multi-wavelength techniques for unraveling contributors to diffuse emission.

Deficit Spending and the Cluster Baryon Budget
March 1, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Ann Zabludoff, University of Arizona / Steward Observatory

The deep gravitational potential wells of clusters of galaxies should capture fair samples of the total baryon fraction of the Universe, unless other physical processes drive baryons out of clusters. Thus precision measurements of the baryon fraction, particularly as a function of cluster halo mass, can reveal the history of baryon flux into and out of clusters. How those baryons are then apportioned between stars and intracluster gas --- the star formation efficiency --- informs models of cluster assembly and massive galaxy evolution, as well as efforts to use the cluster gas fraction to constrain the mass density and dark energy equation of state parameters. Even the partitioning of the stellar baryons alone, in and out of galaxies, tests models of cluster galaxy evolution, as intracluster stars are the final, unambiguous signature of stars stripped from cluster galaxies. We have discovered that intracluster stars are a significant part of the stellar baryons in clusters and poorer groups of galaxies. I will present new work characterizing the properties of this previously unexplored component, as well as the consequences for the cluster baryon budget and its relationship to the Universal WMAP value.

The secret lives of galaxy clusters
March 6, 2013 | 3:30 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Brian W O'Shea, Michigan State University

Galaxy clusters have the potential to be highly accurate probes of cosmological parameters. However, they are also very interesting astrophysical objects in their own right! The properties that make clusters irritating to those who wish to use them for cosmology - deviations from sphericity and hydrostatic equilibrium, shocks, mergers, and a variety of baryonic processes - provide a tremendous amount of information about these massive beasts. I will present recent efforts to understand the effects that correctly modeling the properties of gas in cosmological simulations have on the observable properties of clusters, focusing on shocks and the non-thermal components of the intracluster medium, including cosmic rays and magnetic fields.

Gaussianization: How to Deal with Wrinkles in the Universe
March 8, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Mark C. Neyrinck, Johns Hopkins University

Structures (''wrinkles'') in the Universe like filaments and haloes are essential components of the arrangement of matter on large scales. They form in analogy to the origami-folding of a sheet of dark-matter. While these structures are fascinating, and conveniently allow observers like us to exist, they also make it harder to extract cosmological information on nonlinear scales. In particular, sharp peaks greatly diminish the power of statistics in cosmology. I will discuss how largely to fix them with Gaussianization.

Gravitational Wave Telescopes, Time-Delay Interferometers and Choreographic Crystals
March 22, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Latham Boyle, Perimeter Institute

I will present three interesting problems with neat solutions. All three come from thinking about gravitational wave detection; but the latter two are actually of broader interest. The first problem is how to arrange a handful of gravitational wave detectors to obtain the best gravitational wave telescope. In the second problem, we imagine a collection of "nodes" (e.g. satellites) exchanging laser signals, and want to know how to construct interferometric observables that are insensitive to the phase fluctuations of the lasers. Finally, the third problem begins with the question: what is the most symmetrical arrangement of 4 satellites orbits? This simple question is the doorway to the interesting subject of choreographic crystals, which I will introduce.

Symmetries of primordial perturbations
March 29, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Image credit: Planck collaboration
Friday noon seminar
Austin Joyce, University of Pennsylvania

We will explore the symmetries underlying the statistics of the primordial perturbations which seeded the temperature anisotropies of the Cosmic Microwave Background. I will show how symmetry considerations lead us to three broad classes of theories to explain these perturbations: single-field inflation, multi-field inflation, and the conformal mechanism. We will discuss the symmetries in each case and derive their model-independent consequences.

Towards 1% measurements of cosmological distances with cosmic sound
April 3, 2013 | 3:00 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Nikhil Padmanabhan, Yale University

Measuring the accelerated expansion of the Universe with the goal of better understanding its underlying physics is one of the leading programs in cosmology today. The baryon acoustic oscillation technique is one of the foremost tools in our toolbox today. This talk will explain the underlying physics of this method and the reasons it is extremely robust to observational and theoretical systematic errors. I will then present the latest results from the SDSS and BOSS surveys, currently the most precise distance constraints from this method. These will include a new analysis technique to undo the effects of the nonlinear evolution of the density field and partially ''reconstruct'' the initial density field, and can reduce the distance errors by a factor of 1.7. I will discuss the implications of these measurements, and will conclude by discussing prospects for improvements in the immediate and not-so-immediate future.

Exploring the properties of galaxy clusters with hydrodynamical simulations: the MUSIC dataset
April 5, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Federico Sembolini, Universidad Autonoma de Madrid (Spain)

I will introduce the MUSIC dataset (Marenostrum-MUltiDark Simultations of galaxy Clusters) - presently the largest sample of hydrodynamically simulated galaxy clusters, comprised of more than 700 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using Smoothed Particle Hydrodynamics (SPH) together with relevant physical processes that include; cooling, UV photoionization, star formation and different feedback processes associated with Supernovae explosions. The analysis of the baryon content (gas and stars) of the most massive clusters of the MUSIC dataset, performed as a function of aperture radius and redshift, is compared with the most recent observational estimates of the gas fraction in galaxy clusters, showing a good agreement when the effects of cooling and stellar feedbacks are included. A clear dependence of the gas fraction with the total cluster mass is also evident. I will present a detailed analysis of the scaling relations of the thermal SZ (Sunyaev-Zel'dovich) effect derived from MUSIC clusters. The integrated SZ brightness, Y, is one of the best observational proxies used to infer the total cluster mass, M, as SZ observations allow exploration of regions of clusters not reachable by present X-ray experiments. The analysis of the SZ scaling relations confirm the validity of the self-similar model with a very low scatter and shows a good agreement with the latest observational results, such as Planck. Furthermore, I will explore the presence of a possible redshift dependence on the Y-M scaling relation. In this scope, I extend the analysis to protoclusters, objects typically at redshift higher than 1. Under the assumption of defining a protocluster only as the largest progenitor present at a specific redshift, we are able to estimate the spherical thermal component of SZE, integrated inside the virial radius, and similarly the total mass. The analysis of the scaling relations of MUSIC clusters is completed by estimating the X-ray properties of the objects using PHOX. The X-band is considered to be the observational counterpart of the SZ effect. Beside the standard X-ray scaling relations, like the Lx-M and the T-M relations, a comparison between the X-rays and SZ properties of MUSIC clusters (focusing on scaling relations like the YX-Y and the Y-T relations) will be performed, in order to explore the relationship between galaxy cluster's properties with different observational approaches. Finally, I will use large N-body simulations, such as MultiDark and Big MultiDark, to check the evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich (kSZ) effect measured by ACT (Atacama Cosmology Telescope). Taking advantage of the extensive statistics provided by such large simulations, I will discuss the mean pairwise momentum of clusters from the bulk velocity and the mass of simulated clusters, studying its variation as a function of the cluster mass and of the distance between pairs of objects and underscoring that the observability of the signal grows as the separation decreases.

Effective Field Theories for Fluids and Superfluids
April 10, 2013 | 3:00 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Alberto Nicolis, Columbia University

I will present a novel field theoretical framework that captures the long-distance and low frequency dynamics of hydrodynamical systems. The approach is that of effective field theories, whose building blocks are the long-distance degrees of freedom and symmetries. Possible applications include questions in condensed matter physics, heavy-ion collisions, astrophysics, cosmology, and quantum hydrodynamics. Finally, this formulation naturally invites (and answers) new questions in classical hydrodynamics.

Probing gravitational microphysics with interferometers
April 12, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Aaron Chou, Fermilab

In this seminar, I will describe the Holometer, a small experiment currently under construction at Fermilab to study gravitational microphysics at the Planck scale 10^-33 cm. Black hole thermodynamics already provides some clues to what form this microphysics might take. The Bekenstein-Hawking entropy formula suggests that all information in our universe may be stored holographically on 2-dimensional surfaces rather than in 3-dimensional volumes. Even more startling to our world-view is the notion this formula implies, that the universe has a bandwidth limit of 1 bit per Planck area. Philosophical issues aside, the universal bandwidth limit may produce diffractive effects which become observable when the diffraction is allowed to grow over macroscopic distances to magnify the Planck-scale fuzziness of space-time. The Holometer is a Michelson interferometer-based device optimized to detect the resulting, characteristic position noise spectrum of objects apparently at rest in the space-time. Its relatively small 40 meter size, compared to that of large gravitational wave detectors, allows flexibility of reconfiguration to probe detailed properties of the predicted holographic noise.

The Imprint of the Extragalactic Background Light in the gamma-ray spectra of blazars
April 19, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Marco Ajello, Space Sciences Laboratory, University of California Berkeley

The light emitted by stars throughout the history of the Universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important for understanding the nature of star formation and galaxy evolution.  Direct measurements of the EBL are very difficult due to the intense zodiacal light and the Galactic foreground emission. High-energy gamma rays may interact with photons of the EBL and generate positron-electron pairs. This introduces an attenuation feature in the spectra of distant gamma-ray sources that has been used in the past to set upper limits on the opacity of the Universe and the energy density of the EBL. In this talk, we will report the first detection of an absorption feature seen in the combined spectra of a sample of gamma-ray blazars detected by the Fermi Large Area Telescope (LAT)  out to a redshift of z>1.6.  This feature is caused by attenuation of gamma rays by the EBL at optical to UV frequencies, and points to a minimal level of EBL,  consistent with the observed star formation rate and with low-opacity EBL models. We will present the Fermi observations and discuss the implications for the generation of a diffuse UV background at high redshifts. We will also discuss recent measurements of the (nIR) EBL and present the prospects for a refined measurement of  the EBL up to higher redshifts.

Successes and Limitations of Cosmological N-body Simulations
April 26, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Raul Angulo, KIPAC, Stanford

In this talk I will discuss recent advances in simulating the spatial distribution and properties of galaxies in the Universe. I will start by showing how numerical simulations will help us to understand and exploit the precise measurements of upcoming galaxy
surveys. As an example of this, I will discuss the predicted distortions in the baryonic acoustic oscillation signal when it is measured in the galaxy distribution. In the second part of my talk, I will discuss some limitations of N-body simulations and how some
results might be misleading due to numerical artifacts. As an example of this, I will discuss the case of Warm Dark Matter cosmologies and I will present a possible solution to these problems.

Dark Matter at Colliders
May 1, 2013 | 3:00 PM | BSLC 115 | Wednesday colloquium
Wednesday colloquium
Shufang Su, University of Arizona

While 27% of the Universe is made of dark matter, the particle identity of the dark matter still remains a mystery. Collider studies offers a complementary tool to explore the nature of the dark matter, in addition to dark matter direct and indirect detections. In this talk, I will discuss the collider studies of the dark matter, focusing on how to observe dark matter signals, and how to distinguish dark matter scenarios.
In the first part of the talk I will discuss the model-independent approach for the monojet/monophoton plus missing ET signals, as well as model-dependent signatures of dark matter produced in the cascade decay chain of parent particles. The second part of the talk will focus on the study of distinguishing multiple component dark matter with traditional single particle dark matter.

The High Altitude Water Cherenkov Gamma Ray Observatory: Current Status and Future Prospects
May 3, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Thomas Weisgarber, University of Wisconsin - Madison

The High Altitude Water Cherenkov (HAWC) Observatory is currently under construction on the slopes of Sierra Negra in the Mexican state of Puebla. Scheduled for completion in August 2014, HAWC is designed to record air showers initiated by gamma rays and cosmic rays in the energy range from 100 GeV to 100 TeV. Of the full design of 300 water tanks, 30 are presently instrumented and have been taking data since September 2012. HAWC operates as a survey instrument with a large instantaneous field of view of 2 sr, complementing both ground-based gamma ray detectors such as VERITAS and space-based detectors such as the Fermi Telescope. I will summarize the design and construction of HAWC, discuss preliminary observations of the moon shadow and cosmic-ray anisotropy, and outline prospects for HAWC to contribute to gamma-ray and cosmic-ray science in the near future.

Multiple-Field Inflation in the Post-Planck Era
May 10, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Joel Meyers, Canadian Institute for Theoretical Astrophysics

The results from the Planck satellite have provided excellent constraints on many cosmological parameters allowing us to constrain the physics of inflation. While all observations are currently consistent with the simplest models of inflation, many more complicated scenarios are also consistent with the data. In this talk, I will focus on the theoretical aspects of multiple field inflation in light of the Planck data. I will give particular attention to the local bispectrum which is tightly constrained by Planck giving us non-trivial information about the physics of the early universe.

Final Results from Three Years of Observations with the BICEP Telescope
May 17, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Colin Bischoff, Harvard-Smithsonian Center for Astrophysics

The BICEP telescope, which operated at the South Pole from 2006 to 2008, was the first instrument designed specifically to search for inflation by targeting the B-mode polarization of the Cosmic Microwave Background at large angular scales. Results from the first two seasons, published in Chiang et al. (2010), have so far provided the tightest upper limits on B-modes. We report on new results that incorporate the full three year data set to improve this constraint. Besides including more data, the new analysis uses a novel method to deproject the largest source of systematic contamination in BICEP data.

The successful design of BICEP is the basis of BICEP2, which operated at the South Pole from 2010 through 2012, and the Keck Array, which began observations in 2011 and is still operating. These experiments are currently producing extremely deep maps of CMB polarization.

The Influence of Baryons in Interpreting the Cosmological Model
May 24, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Alyson Brooks, U Wisconsin Madison

The cosmological model based on cold dark matter (CDM) and dark energy has been hugely successful in describing the observed evolution and large scale structure of our Universe. However, at small scales (in the smallest galaxies and at the centers of larger galaxies), a number of observations seem to conflict with the predictions CDM cosmology, leading to recent exploration of Warm Dark Matter (WDM) and Self-Interacting Dark Matter (SIDM) models. These small scales, though, are also regions dominated by baryons. The more complex physics of baryons make them more difficult to model. I will show results from some of the highest resolution cosmological galaxy simulations ever produced that include both baryons and dark matter to show that baryonic physics can significantly alter the dark matter structure of galaxies, revolutionizing our expectations for the observed structure of galaxies. I will make the case that baryons have the potential to solve the crisis within CDM, but may also make it difficult to identify CDM vs WDM vs SIDM.

Observation of High Energy Neutrinos at IceCube
May 29, 2013 | 3:00 PM | KPTC 106 | Wednesday colloquium
Wednesday colloquium
Nathan Whitehorn, University of Wisconsin - Madison

Cosmic rays above the ankle (10^18 eV) are the universe's most energetic particles and must be produced in the universe's most energetic objects -- but which ones? and how? Neutrinos should be produced in whatever the cosmic accelerators are and should provide unique insights into their production mechanisms. Recent searches for high-energy (> 100 TeV) neutrinos at the antarctic IceCube neutrino observatory have produced the first evidence for a neutrino population beyond what is readily explained by neutrino production in the Earth's atmosphere from cosmic ray interactions, including the observation of several events with energies above 1 PeV -- the highest energy neutrinos ever observed. This talk will discuss the current status of these astrophysical neutrino searches in IceCube and prospects for the future.

Low-mass WIMPs: Confessions of a Nihilist
May 31, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Juan Collar, The University of Chicago

I will review the present state of confusion concerning the ~10 GeV region in WIMP parameter space, with emphasis on the experimental uncertainties. Lots of those. We'll briefly allow ourselves to look at the light at the end of this tunnel (i.e., will discuss incoming information that should lead us out of the present impasse).

Feedback from AGN In Massive Galaxies: The Importance of Momentum Driving
September 25, 2013 | 3:00 PM | BSLC 109 | Astronomy colloquium
Astronomy colloquium
Jeremiah P. Ostriker, Princeton University

Black holes, resident in the centers of galaxies, will be fed by accretion of ambient gas whenever gas reaches those central regions. This can be due to mergers, but even without mergers the evolution of the stellar populations of normal galaxies provides very large amounts of gas, as stars pass through the planetary nebula stage, the total mass release being greater than 1011 Msolar for massive ellipticals. Much of that gas will cool and fall to the centers of the systems, where it will induce starbursts and accretion events onto the central black holes with resultant AGN outbursts. The mass, momentum and energy in these outbursts can have dramatic consequences for the growth of the BH and for the ambient galaxy. Most AGN feedback treatments do not include the mass and momentum components. We follow these events with 1D, 2D and 3D hydrodynamic codes. BH growth is similar to what has been found by others, but the momentum driving produces much more energetic winds than does thermal feedback reducing star formation and thermal X-ray emission. Observable consequences include the narrow line AGN absorption lines, shock accelerated synchrotron emitting particles and wind driven bubbles in the IGM. In addition, we find that the feedback strongly inhibits inflow, causing episodic accretion and a low "duty cycle". The simulations help us to understand many phenomena including the black hole stellar mass relation, "quenching" of the mass growth, the X-Ray luminosity of ellipticals, the incidence of the "E+A" phenomena and the observed fact that most of the black holes found in galactic centers are found in the "off" state.

Star formation regulated by magnetic reconnection
October 2, 2013 | 3:00 PM | BSLC 001 | Astronomy colloquium
Astronomy colloquium
Alex Lazarian, University of Wisconsin - Madison

Recent years have been marked by a notable change in the star formation paradigm. Instead of quasi-static molecular clouds slowly evolving under the influence of gravity and ambipolar diffusion a new picture with more action and dynamics emerged. Within new understanding of interstellar processes, the molecular clouds are associated with turbulent density fluctuations and the structure of the interstellar medium evolves fast on the sound crossing times. I appeal to the advances in understanding of magnetic reconnection in turbulent medium and demonstrate that fast reconnection can cause of the efficient magnetic field diffusion that does not depend on the degree of media ionization. I shall show that a process that I term "reconnection diffusion" can be responsible for efficient removing magnetic flux during star formation. For the giant molecular clouds (GMCs) and for many cloud cores the resulting rates of magnetic field removal dominate the ambipolar diffusion rates in partially ionized gas. I shall show that numerical simulations validate the concept of "reconnection diffusion" and that this process can successfully explain the existing observational data on magnetic field -- density correlations in diffuse media, removal of magnetic fields from clouds and accretion disks on the time scale less than the ambiploar diffusion as well as the recent results by Crutcher et al. on the magnetization of cores and envelops. I shall discuss the implications of the reconnection diffusion process for the theory of star formation.

Non-linear Boltzmann Equations on the Cosmic Microwave Background
October 4, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Shi Chun Su, DAMTP, University of Cambridge

After COBE and WMAP, the recent results from Planck probe the primordial signals with unprecedented precision. For the very first time, the Planck mission detects the ISW-lensing bispectrum which comes from the non-linear evolution of the CMB. We have entered an era when the linear perturbation theory is simply not enough. While most dominant effects on the CMB are studied through the Boltzmann equation, some late-time effects including the weak lensing effect are calculated differently. As a consistency check, we establish a rigorous framework where we can study different effects on the same pace. In this talk, I will present the formalism of calculating the weak lensing effect by directly solving the Boltzmann equations. The formalism can be extended to arbitrary orders in the perturbation theory and facilitates the studies of non-linear effects. Similar techniques can be used to calculate other late-time effects (e.g. the Rees-Sciama and time-delay effect) and all the possible couplings among them. I will also demonstrate how to use a set of diagrams to simplify the calculations in high orders.

Foiling LCDM
October 9, 2013 | 3:00 PM | BSLC 001 | Wednesday colloquium
Wednesday colloquium
Wayne Hu, The University of Chicago

PDF
I will discuss consistency tests of the standard LCDM paradigm in light of the comparison between recent Planck CMB results and local measurements, using alternative models as foils.

Precision measures of the primordial deuterium abundance
October 11, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Ryan J Cooke, University of California Santa Cruz

We are currently in an exciting era of precision cosmology. With the release of the cosmic microwave background data recorded by the Planck satellite, we are now in a position to accurately test the standard model of cosmology and particle physics. In this talk, I will present two new, precise measures of the primordial abundance of deuterium - the most accurate measurements to date - derived from redshift ~3 metal-poor damped Lyman-alpha systems. In light of these new measurements, we have performed a careful reanalysis of the best literature systems where the primordial deuterium abundance can be estimated. These precise measures, when analyzed in conjunction with the Planck data, now place strong limits on the effective number of neutrino species in the early Universe, and offers new insight into physics beyond the standard model. I will also discuss our ongoing survey to obtain new precision measures of the primordial deuterium abundance.

The Galactic Center: Unveiling the Heart of our Galaxy
October 16, 2013 | 3:00 PM | BSLC 001 | Astronomy colloquium
Astronomy colloquium
Andrea M. Ghez, UCLA

The proximity of the center of our Galaxy has presented us with a unique opportunity to study a galactic nucleus with orders of magnitude higher spatial resolution than can be brought to bear on any other galaxy. This advantage, along with the recent advances in high angular resolution imaging technologies, has allowed the first observations of individual stars at the very heart of a galaxy. After more than a decade, such observations have transformed the case for a supermassive black hole at the Galactic center from a possibility to a certainty, thanks to measurements of individual stellar orbits. The rapidity with which these stars move on small-scale orbits indicates that 4 million times the mass of the sun resides within a region comparable to the size of our solar system and provides the best evidence yet that supermassive black holes, which confront and challenge our knowledge of fundamental physics, do exist in the Universe. Subsequent high-resolution imaging studies of the Galactic center have shown that the stellar population near our Galaxy's supermassive back hole is quite different from the predications of theoretical models for the interaction between central black holes and their environs (an essential input into models for the growth of nuclear black holes). In particularly, the observations have revealed an abundance of young stars in a region that is inhospitable to star formation and, conversely, a dearth of old stars where as a stellar cusp is expected. Further improvements in measurement precision should enable tests of Einstein's theory of General Relativity in the extreme environment near a supermassive black hole.

What can Galaxy Evolution tell us about Short Gamma-Ray Bursts?
October 18, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Peter Behroozi, Stanford University

We use recent constraints on the star formation rate---halo mass---redshift relation to model the host halo environments where short Gamma-Ray Burst (sGRB) progenitors are created. These halo environments set minimum energy requirements for sGRB progenitors to leave the vicinity of their original galaxy. We find that the fraction of sGRBs which are hostless is a robust probe of the underlying velocity kick distribution for sGRB progenitors, regardless of uncertainties in the sGRB time-delay distribution and observational systematics. We use observed constraints on the hostless fraction of sGRBs to rule out several sGRB progenitor classes which cannot supply the necessary velocity kicks. Finally, we discuss the ability of sGRB galaxy host properties (e.g., stellar mass and morphology) to further constrain model uncertainties.

Extragalactic Archeology
October 23, 2013 | 3:00 PM | BSLC 001 | Astronomy colloquium
Astronomy colloquium
Charlie Conroy, University of California, Santa Cruz

One of the main avenues for understanding the formation and evolution of galaxies is through studying their present day stellar populations. A new generation of population synthesis tools that we have been developing are now capable of extracting an unprecedented amount of information from high quality spectra of galaxies. In this talk I will present results from an ongoing program aimed at measuring the stellar initial mass function and detailed elemental abundance patterns of early-type galaxies over the interval 0 < z < 1. Current data suggest that the IMF varies systematically across the galaxy population, with implications both for star formation theory and the inferred dark matter content in the central regions of galaxies. Constraints on the abundances of the alpha elements, iron peak elements, and neutron capture elements offer the promise of reconstructing the detailed star formation histories of these now dormant galaxies. Measuring the evolution of these quantities through cosmic time will provide new constraints on the assembly histories of galaxies and will open up a new era of 'extragalactic chemical tagging'.

The Illustris galaxy formation simulations: moving towards a realistic simulated Universe
October 25, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Shy Genel, Harvard-CfA

Galaxy formation is a complicated process that is notoriously hard to model due to both the large variety of physical phenomena that are involved and the huge dynamic range that they encompass. I will present recent results from the Illustris project, which is a set of large cosmological hydrodynamical simulations, including the largest ever performed. The simulations are run with the moving-mesh code Arepo, and include physical processes critical for galaxy formation, such as various forms of stellar and AGN feedback. In many critical respects, the simulated galaxy populations that are obtained resemble the galaxy populations observed in the real Universe. I will discuss various aspects of the galaxy formation process as it appears in these simulations.

Neutrino Quantum Spookiness: Collapsing Stars, Supernovae, and the Cosmos
October 30, 2013 | 3:00 PM | BSLC 001 | Wednesday colloquium
Wednesday colloquium
George Fuller, University of California, San Diego

PDF
Collapsing stellar cores and the early universe are fantastic engines for generating neutrinos, ghostlike
particles which interact with matter only through the aptly named weak interaction and gravitation. However, neutrinos can more than make up for these feeble interactions with huge numbers. They can even come to dominate the energetics and element synthesis in the early universe and supernovae. But the way neutrinos interact with matter depends on which of three "flavors" they come in, i.e., electron, muon, or tau flavor. We therefore must determine how neutrino flavor changes as these particles move through their surroundings. This is a tricky, new kind of quantum mechanics problem. The advent of supercomputers has allowed us to follow this process in places, like supernova cores, where the flavor states of the neutrinos determine how flavor changes. And yes, this process is fiercely nonlinear. The results are startling and unexpected. Neutrinos can undergo collective flavor oscillations, producing signatures akin to domain formation in familiar condensed systems like ferromagnets. These signatures, if detected, could give us insights into astrophysical processes, like where the elements come from, but also into as yet unmeasured fundamental particle physics and cosmology issues, e.g., the neutrino mass hierarchy, the neutrino magnetic moment, and dark matter. Future high precision measurements, especially of the cosmic background radiation, promise to box-in many currently outstanding issues in neutrino physics.

Physics at the Fringe : A Status Report on the Fermilab Holometer
November 1, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Lee McCuller, Bobby Lanza, Jon Richardson and Brittany Kamai, Fermilab

The Holometer is an experiment designed to test a proposed theoretical model attempting to merge physics at gravitational and quantum mechanical scales. It consists of two 40m Michelson interferometers independently sampling their beamsplitter positions in search of a resulting Planck-suppressed fluctuation in the position measurements. Co-located instruments will show this noise as a correlated signal below the optical shot-noise in the instruments' sensitive band from 100kHz-10MHz. This talk will provide an update on the Holometer operational status, including an overview of ongoing commissioning efforts and current sensitivities.

Cosmic Calibration or: How I Learned to Stop Worrying and Love Supercomputers
November 6, 2013 | 3:00 PM | BSLC 001 | Wednesday colloquium
Wednesday colloquium
Katrin Heitmann, The University of Chicago

PDF
Cosmology is now entering one of its most scientifically exciting phases. Decades of surveying the sky have culminated in the celebrated "Cosmological Standard Model". Yet, two of its key pillars, dark matter and dark energy -- together accounting for 95% of the mass-energy of the Universe -- remain mysterious. Deep fundamental questions demand answers: What is dark matter made of? Why is the Universe's expansion rate accelerating? Should general relativity be modified? What is the nature of primordial fluctuations? What is the exact geometry of the Universe? Next-generation observatories will open new routes to understand the true nature of the "Dark Universe". These observations will pose tremendous challenges on many fronts -- from the sheer size of the data that will be collected (more than a hundred Petabytes) to its modeling and interpretation. The interpretation of the data requires sophisticated simulations on the world's largest supercomputers. The cost of these simulations, the large number of modeling parameters, the uncertainties in our modeling abilities, and the fact that we have only one Universe that we can observe opposed to carrying out controlled experiments, all come together to create a major test for the process of scientific inference.

In this talk I will give a very brief introduction to the Dark Universe and outline the challenges ahead. To combat these challenges, close cross-disciplinary collaborations between physicists, statisticians, and computer scientists will be crucial. I will discuss two key advances brought about by successful collaboration: (i) the development of HACC, a new N-body code that enables us to carry out very large cosmological simulations, and (ii) the cosmic calibration framework which melds sophisticated statistical methods with simulation and modeling inputs to attack the problem of scientific inference.

Partially massless gravity
November 8, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Kurt Hinterbichler, Perimeter Institute

On de Sitter space, there exists a special value for the mass of a graviton for which the linear theory propagates 4 rather than 5 degrees of freedom. If a fully non-linear version of the theory exists and can be coupled to known matter, it would have interesting properties and could solve the cosmological constant problem. I will describe evidence for and obstructions to the existence of such a theory.

Testing Gravity by Poking the Moon with a Laser
November 13, 2013 | 3:00 PM | BSLC 001 | Wednesday colloquium
Wednesday colloquium
Tom Murphy, UCSD

Laser range measurements between the earth and the moon have provided some of our best tests to date of general relativity and gravitational phenomenology--including the equivalence principle, the time-rate-of-change of the gravitational constant, the inverse square law, and gravitomagnetism. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) is now collecting measurements at the unprecedented precision of one millimeter, which will produce order-of-magnitude improvements in a variety of gravitational tests. Experimental performance, evidence for dust-induced degradation of the reflectors, finding the lost Soviet Lunokhod 1 reflector, project status and science outlook will be discussed.

Origins of Gas Giant Planets
November 20, 2013 | 3:00 PM | BSLC 001 | Astronomy colloquium
Astronomy colloquium
Ruth Murray-Clay, Harvard-Smithsonian Center for Astrophysics

PDF
Several giant planets have now been directly imaged, offering the first view of extrasolar planets at wide separations from their host stars. Formation of these objects by either leading theory--core accretion or gravitational instability--presents substantial difficulties. These challenges may be reinterpreted as opportunities. In this talk, I will demonstrate how to use upcoming constraints from direct imaging to distinguish between theories of giant planet formation. Along the way, I will discuss whether gravitational instability could have formed the iconic directly-imaged planetary system HR 8799, present a new theory of planetary core growth in the presence of gas that extends the reach of core accretion to large stellocentric distances, and show how the atmospheric compositions of giant planets record signatures of their formation locations.

WIMP physics with direct detection
November 22, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
Annika Peter, The Ohio State University

One of the best-motivated classes of dark-matter candidate is the Weakly-Interacting Massive Particle (WIMP). In this talk, I will discuss WIMPs in the context of direct-detection experiments. First, I will discuss a new signal for WIMP dark matter: gravitational focusing in direct-detection experiments. This effect leads to an energy-dependent phase-shift in the peak direct-detection event rate throughout the year. I will discuss this in light of current putative annual-modulation claims. Second, I will discuss what we can learn about WIMPs in the "early-discovery" days once WIMPs are conclusively found in direct-detection experiments. I will show that what we can learn about WIMPs depends sensitively on the ensemble of experiments that are running at the time of discovery.

Cosmological simulations of the formation of galaxies
November 26, 2013 | 3:00 PM | KCBD Auditorium 1103 (1st floor) Corner of 57th and Drexel (entrance near the statue) | Astronomy colloquium
Astronomy colloquium
Joop Schaye, Leiden University

Cosmological hydro simulations can give unique insight into the formation and evolution of galaxies and their interplay with the intergalactic medium. They have realistic initial conditions, they can provide representative samples of galaxies that span a wide range of mass and environment, they can follow their evolution over time, and they can simultaneously model both the galaxies the intergalactic medium around them. The drawback of cosmological simulations is, however, their limited resolution and the importance of subgrid models. I will give an overview of the ingredients of the simulations and discuss recent developments, current issues and bottlenecks. I will then use the simulations to highlight the key role that self-regulation plays in the evolution of galaxies. Finally, I will demonstrate that the feedback processes that appear to be needed to match the observations have a dramatic impact on observational cosmology.

Large-Scale Structure in the intergalactic medium and the formation of galaxies: What we are learning from BOSS in SDSS-III
December 4, 2013 | 3:00 PM | BSLC 001 | Astronomy colloquium
Contours of the redshift-space cross-correlation of damped Lyman alpha systems with the Lyman alpha forest absorption, comparing the observation (left) with the linear theory prediction (right).
Astronomy colloquium
Jordi Miralda-Escude, University of Barcelona

The Baryon acoustic OScillations Survey in SDSS-III is obtaining more than one hundred thousand absorption spectra of quasars at redshift z>2. This opens a new window for studies of large-scale structure at high redshift, which has already resulted in the first detection of the Baryon Acoustic Oscillation peak at these redshifts, using absorption of intergalactic gas. Cross-correlations of the Lyman alpha absorption with other objects, among them Damped Lyman Alpha absorption systems as tracers of high-redshift galaxies, reveals their spatial distribution and provides new clues on how galaxies were forming at this epoch, when the universe was about 3 billion years old.

Directional Dark Matter Detection
December 6, 2013 | 12:00 PM | LASR Conference Room | Friday noon seminar
Friday noon seminar
James Battat, Wellesley College

The mysterious nature of dark matter has eluded explanation for decades, and remains a major puzzle in physics today. Detectors that search for the direct interaction of dark matter with target nuclei must distinguish rare dark matter interactions from abundant backgrounds that can masquerade as signal. Searches for dark matter have not yet fully exploited a unique astrophysical signature of dark matter: the angular distribution on the sky. No known background can mimic the expected forward-backward asymmetry of WIMP-induced interactions. I will give an overview of directional dark matter detection, and describe recent experimental results.